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Hydrodynamic model approach to the formation of plasmonic wakes in graphene
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Using the hydrodynamic model in the electrostatic approximation, we describe the formation of graphene
surface plasmons when a nearby charge is in motion either perpendicular or parallel to a graphene sheet. In the
first case, the electron-energy loss (EEL) spectrum of the electron is computed, showing that the resonances in
the spectrum are linked to the frequency of the graphene surface plasmons. In the second case, we discuss the
formation of plasmonic wakes due to the dragging of the surface plasmons induced by the motion of the charge.
This effect is similar to Coulomb drag between two electron gases at a distance from each other. We derive
simple expressions for the electrostatic potential induced by the moving charge on graphene. We show that there
is a transition from a Mach-type wake at high speeds to a Kelvin-type wake at low ones and identify the Froude
number for plasmonic wakes. We show that the Froude number can be controlled externally by tunning both
the Fermi energy in graphene and the dielectric function of the environment, a situation with no parallel in ship
wakes. Using EEL, we propose a source of graphene plasmons, based on a graphene drum built in a metallic
waveguide and activated by an electron beam created by the tip of an electronic microscope. We also introduce
the notion of a plasmonic billiard.
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I. INTRODUCTION

The hydrodynamic model [1,2] for plasmonics is a macro-
scopic approach to a microscopic problem, as was well noted
by Ciracì et al. [3] (see also Ref. [4]). This model combines
Maxwell’s equations, Euler’s equation of hydrodynamics
supplemented with a term due to the statistical pressure of an
electron gas, and the continuity equation. This set of equations
is used for describing the nonlocal optical response of either
a metallic interface [5–7] or a metallic nanostructure [8,9].
The model can be applied both to 3D [10], 2D [11–13], or 1D
metallic structures [9,14,15]. In the latter case, the situation
of two metallic nanoparticles in close proximity is rather
important as it allows us to probe electromagnetic interactions
between them down to the separation of few atoms [16,17].
Indeed, whereas an electromagnetic local description of the
dimer optical properties predicts a divergent enhancement
of the electromagnetic energy density in the gap region
between the two nanoparticles, a nonlocal description predicts
a reduction of the field enhancement when the two particle
are at atomic distances from each other, in agreement with the
experimental observations [16,17].

In the past six years, graphene has emerged as a new
platform for studying plasmonic effects in the THz and mid-IR,
a spectral range where noble metal plasmons show poor spatial
confinement. Since the hydrodynamic model can be applied
to the 2D electron gas [12], a natural question arises whether
graphene, which supports a massless electron gas, can also
be described by the hydrodynamic model. Müller et al. have
shown that the massless electron gas in graphene behaves as a
nearly perfect fluid [18] with the electronic motion described
by the Navier–Stokes equation, from which Euler’s equation
follows. This model for electronic motion has subsequently
been applied to the characterization of the conductivity of

graphene [19] as well as to the characterization of its plasmonic
properties [11].

One of the merits of the hydrodynamic model [20,21]
is permitting the inclusion of nonlocal effects in the plas-
monic response of very small metallic nanostructures without
much computational burden. Within this model, nonlocality
appears due to the dependence of the statistical pressure
on the position-dependent electronic density, and Coulomb
interactions are included via the coupling of Euler’s equation
with Maxwell’s equations (or via Poisson’s equation in an elec-
trostatic calculation). Nonlocal effects emerge when the size of
the nanostructures becomes small enough for coarse graining
of the electronic charge no longer holds [16]. These effects
have also impact in the optical properties of metallic gratings
[22]. This happen when the wavelength of the surface plasmon
in the metal is smaller than typical size of the nanostructures.
Typically, the condition qc/ωp � 1, where q, c, and ωp are
the wave number of the surface plasmon, the speed of light
in vacuum, and the plasma frequency of the metal, has to be
fulfilled for nonlocality to play an important role in the optical
spectrum of the system. Physically, nonlocality arises due to
the smearing of the electronic charge when probed down to
the nanoscale [23]. As a consequence, the screening of the
electromagnetic fields becomes less efficient when compared
to the local calculation prediction. Given this, a simple model
[7] for a nonlocal metal was recently introduced which allows
much analytical progress.

For graphene, the criterion for nonlocality to be important
is qc/(kF vF ) � 1, with kF and vF being the Fermi wave
number and Fermi speed, respectively (clearly, the system will
be highly nonlocal near the graphene neutrality point). For
graphene near a metal, the dispersion is strongly dependent on
distance between the two systems. Taking a metal-graphene
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distance of about 1.5 nm, the graphene-metal plasmons can
appear in the mid-IR with a wave number of the order
of 200 μm−1 (corresponding to a λspp = 2π/q ≈ 30 nm).
Considering a Fermi energy of graphene of about EF =
0.4 eV, the previous condition gives qc/(kF vF ) ∼ 100, thus
placing graphene in the strong nonlocal regime. With these
conditions, this means that the optical properties of graphene,
such as its optical conductivity, have to be taken as a function of
both frequency ω and wave vector k in order to account for both
temporal and spatial dispersion. Recently, it became possible
to retrieve experimentally the nonlocal optical conductivity of
graphene using acoustic graphene plasmons [24], introducing
a test for the accuracy of many-body calculations.

In this paper, nonlocality in graphene is taken into account at
the level of the hydrodynamic model, considering a quantum
pressure term that is spatially dependent. Basically, hydro-
dynamics is the small-wave number correction to the local
description, and by carefully expanding the response function
emerging from the random-phase approximation (RPA), we in
general find a two-fluid model to account for both the interband
and intraband effects, which both exhibit spatial dispersion,
but with different nonlocal parameters [25]. In this paper
we neglect the interband contribution, since in the frequency
window we are interested in, these type of transitions are
blocked by Pauli’s principle.

The remaining of the paper is organized as follows. In
Sec. II, we study the hydrodynamic model with external
potentials due to external charge densities. This sets the basic
equations for describing the effect of moving charges on
graphene electronic properties. In Sec. III, the effect of moving
charges (see Fig. 1) in the induction of plasmonic wakes at the
surface of graphene is studied. In order to discuss plasmonic
effects in graphene nanostructures, we consider in Sec. IV
the excitation of localized graphene plasmons by an electron
in motion, impinging perpendicularly to a nanorectangle of
graphene located in a metallic waveguide. Finally, in Sec. V,
we present a short overview of the paper, discuss possible
extensions of this work, and introduce the concepts of Froude
number for plasmonic wakes and of plasmonic billiards.
In Appendix A, we present a short derivation to Euler’s
equation of hydrodynamics starting from Boltzmann equation.
In Appendix B, the hydrodynamic model for graphene is
presented and the derivation of the spectrum of the graphene
plasmons is given.

II. 2D HYDRODYNAMIC MODEL IN THE PRESENCE
OF EXTERNAL POTENTIALS

The hydrodynamic model of the electromagnetic response
of an electron gas couples Euler’s equation (see Appendix A for
a derivation starting with Boltzmann’s equation) to Maxwell’s
equations [20,21,26,27]. Within this model the spectrum of
the surface plasmon-polaritons easily follows, as shown in
Appendix B (the reader should consult this appendix for details
on the notation used below). To emphasize the 2D nature of the
problem, we will in the following introduce r = (r‖,z) with r‖
being a 2D position vector in the plane of the graphene (z = 0),
while z is in the direction perpendicular to the graphene layer.

In this section, we follow Fetter [12] for the calculation of
the response of the electron gas to external potentials. Let us

FIG. 1. System considered in this paper: a charge is moving
relatively to graphene either perpendicular (top) or parallel (bottom)
to it. The effect of the interaction of the charge with the electron gas in
graphene is studied using the hydrodynamic model, which has built
in nonlocal corrections due to the statistical pressure of the electron
gas. The charge induces surface plasmons in graphene which can be
probed by EEL spectroscopy.

consider the additional presence of external electrostatic forces
acting on the electron gas. This is accounted for by adding
extra terms to both the hydrodynamic equation and Poisson’s
equation (see Appendixes A and B). These two equations are
modified as

∂v
∂t

= evF

h̄kF

∇[φ1(r‖,0) + φex(r‖,0)] − v2
F

2n0
∇n1(r‖) (1a)

∇2[φ1(r) + φex(r)] = − e

ε0
ρex(r) + e

ε0
δ(z)n1(r‖,0), (1b)

where φex(r‖,z) is the external potential due to the external
forces, ρex(k,z,ω) is the volume density of external charges,
and the continuity equation is unchanged by the presence of the
additional potentials. Next, we introduce the Fourier transform
of the different quantities, leading to

−iωv(k,ω) = evF

h̄kF

ikφ(k,0,ω) − v2
F

2n0
ikn1(k,ω) (2a)

for Euler’s equation and(
∂2

∂z2
− k2

)
φ(k,z,ω) = − e

ε0
ρex(k,z,ω)

+ e

ε0
δ(z)n1(k,ω) (2b)
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for Poisson’s equation, where φ(k,z,ω) = φ1(k,z,ω) +
φex(k,z,ω) [the continuity equation is unchanged: 0 =
−iωn1(k,ω) + n0ik · v(k,ω)]. For solving Eq. (2b), we use
the Green’s function method. The free space Green’s function
is defined as(

∂2

∂z2
− k2

)
g(k,z − z′,ω) = −δ(z − z′), (3)

from where it follows that

φ(k,z,ω) =
∫

dz′g(k,z − z′,ω)ρ(k,z′,ω), (4)

where

ρ(k,z,ω) = − e

ε0

[
ρex(k,z,ω) − e

ε0
δ(z)n1(k,ω)

]
. (5)

The solution of Eq. (3) is well known and reads g(k,z −
z′,ω) = exp (−k|z − z′|)/(2k). As a consequence, the poten-
tial reads

φ(k,z,ω) =
∫

dz′ e

2kε0
e−k|z−z′ |ρex(k,z′,ω)

− e

2kε0
e−k|z|n1(k,ω), (6)

which we write compactly as φ(k,z,ω) = 
ex(k,z,ω) −

2D,1(k,z,ω), where


ex(k,z,ω) =
∫

dz′ e

2kε0
e−k|z−z′ |ρex(k,z′,ω). (7)

Using this result in the hydrodynamic equation, we obtain

ωv(k,ω) = e

m
k[
2D,1(k,0,ω) − 
ex(k,0,ω)]

+ v2
F

2n0
kn1(k,ω). (8)

From the previous equation, we obtain the velocity, which we
plug in the continuity equation, that can be solved for n1(k,ω),
and the induced potential is given by


in(k,z,ω) = −
2D,1(k,z,ω)

= n0e
3

4ε2
0mg

e−k|z|

ω2 − ω2
spp

∫
dz′e−k|z′ |ρex(k,z′,ω).

(9)

For computing these quantities in real space an inverse Fourier
transform has to be performed.

III. INDUCED ELECTROSTATIC POTENTIAL DUE
TO A MOVING CHARGE

Next we consider two applications of the central results ob-
tained in the previous section. We shall consider the calculation
of the induced electrostatic potential 
in(r‖,z,ω) and induced
electric field in graphene, E(r‖,z,ω) = −∇
in(r‖,z,ω), due to
a charge Ze moving at the speed v. We consider two cases:

ρex(r‖,z,t) = Zδ(x)δ(y)δ(z − vt), (10a)

ρex(r‖,z,t) = Zδ(x)δ(y − vt)δ(z − z0). (10b)

Equations (10a) and (10b) represent the motion of the
moving charge perpendicular to the graphene plane (piercing
it) and the motion of the moving charge parallel to the graphene
plane at a height z = z0, respectively. The Fourier transform
in r‖ and t of the charge distributions gives ρex(k,z,ω) =
Z/veiωz/v ≡ Z/veizkz and ρex(k,z,ω) = Zδ(z − z0)2πδ(ω −
kyv) for Eqs. (10a) and (10b), respectively. In both cases,
we see a linear relation between the wave number and
frequency: kz = ω/v and ω = kyv in the perpendicular and
parallel motion, respectively. Note, however, that due to lack
of translation invariance along the z direction, kz is not a
conserved quantity; this implies a nontrivial EEL spectrum.
For ease of notation for later use, we now introduce a common
prefactor 
0 ≡ Zn0e

3

4ε2
0mg

1
v2 = Ze

ε0
α vF c

v2 kF that will serve to make

many integrals dimensionless. Note that 
0 has units of
electric potential. Since kF = 2π/λF , where λF is the Fermi
wavelength, 
0 can be interpreted as the average Coulomb
energy between two particles in the electron gas.

A. Motion perpendicular to the graphene sheet

An experimental method of accessing graphene surface
plasmons is measuring the energy loss of an electron (or
charged particle in general) when it passes through a graphene
sheet. With this in mind we first consider the motion perpen-
dicular to the graphene plane. The induced potential is given
by


in(k,z,ω) = 
0v
2 e−k|z|

ω2 − ω2
spp

2vk

v2k2 + ω2
. (11)

Fourier transforming to real space and time we have


in(r‖,z,t) = 
0

∫
v2 dωdk

(2π )3

e−k|z|ei(k·r‖−ωt)

(ω + iη)2 − ω2
spp

2vk

v2k2 + ω2

(12)

where η is a small positive real number added to account
for causality. The angular integral gives 2πJ0(kr). After
performing the frequency integral we obtain


in(r,z,t) = 
0

∫ ∞

0
v3 k2dk

2π
e−k|z|J0(kr)I1(ωspp,k,t), (13)

where

I1(ωspp,k,t) = −θ (t)
sin(ωsppt)

ωspp

1

ω2
spp + v2k2

− 1

2vk

e−vk|t |

v2k2 + ω2
spp

. (14)

Therefore the problem of finding the induced electrostatic
potential amounts to a simple quadrature. In Fig. 2, we
represent 
in(r,0,t) as a function of the distance to the origin
for four different times. For shorter times we see the formation
of the surface plasmon wave. At longer times, the surface
plasmon has propagated a given distance. It is clear that
the electrostatic disturbance is not monochromatic since a
single wavelength cannot be identified from the figure. As we
will see in the next section, this will translate into a nontrivial
spectrum for the energy loss of a charged particle when it
transverses a graphene sheet.
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FIG. 2. Potential at position z0 = 0.1 μm above the graphene
sheet (EF = 0.37 eV) for t = 1, 10 fs (top) and t = 50, 100 fs
(bottom) and for a particle of speed v = 0.01c. At large distances
the induced potential approaches zero. At shorter times, we witness
the formation of the surface plasmon polariton. At longer times
the disturbance in the electronic density propagates way from the
point r = 0. The moving electric charge starts at the graphene
sheet. As time evolves oscillatory behavior develops in the induced
potential associated with the modulation of the electronic charge
in the graphene sheet. The particle kinetic energy is about 25 eV.
Note that the potential oscillations are not characterized by a well
defined wavelength, meaning that surface plasmons of different wave
numbers are excited simultaneously. The reader is invited to compare
these plots with Fig. 2 of Ref. [32], which also considered the
dynamics of graphene plasmons induced by swift electrons.

B. The EEL spectrum

Here we compute the electron-energy loss spectrum. This
problem has been considered for graphene before using a
completely different formalism [28]. Using the same methods
of the previous reference, the problem of a 2D electron gas
has also been considered [29–31], including the case where a
magnetic field is present. Recently, the transient dynamics of
2D graphene-plasmons launched by swift electrons has also
been considered [32].

To the goal in view, we need the quantity Ez(0,z,ω) =
−∂
in(0,z,ω)/∂z since by definition the EEL spectrum
reads [33]

�(ω) = Ze

πh̄ω

∫ ∞

−∞
dt 
{eiωtV · E(0,vt,ω)}, (15)

where V = (0,0,v) and Z = 1 for the electron, and the symbol

 stands for the real part. The induced electrostatic potential

FIG. 3. Loss spectrum as a function of the energy for five speeds
to the electron. The peaks disperse as a function of the speed of the
electrons. This allows to retrieve the dispersion of the plasmons. The
wave number kres, which satisfies the condition ωspp(kres) = kresv, is
connected to the resonance frequency ωres, the maximum of the EEL
spectrum. This relation allows to reconstruct the surface plasmon
dispersion from the EEL spectrum. The Fermi energy is EF = 0.4 eV.
The long tail as a function of frequency suggests that a continuum of
surface plasmons is excited by the moving charge.

reads


in(0,z,ω) = 
0

∫ ∞

0
v2 kdk

2π

e−k|z|

(ω + iη)2 − ω2
spp

2vk

v2k2 + ω2
.

(16)

Therefore it follows that the EEL spectrum can be written as

�(ω) = Ze

πh̄ω

0

∫ ∞

−∞
dt

∫ ∞

0
v3 k2dk

2π

2vk

v2k2 + ω2

× sgn(t)e−k|vt |eiωt

(ω + iη)2 − ω2
spp

, (17)

where the real part is implicit. Performing the time integral we
find (using the Sokhotski-Plemelj theorem)

�(ω) = Ze

πh̄ω

0

∫ ∞

0
v3 k2dk

2π

2vk

v2k2 + ω2

× 2ω

k2v2 + ω2
πδ(ω − ωspp). (18)

Writing ωspp = √
ak, where the parameter

a = 2αEF c/h̄ (19)

has units of acceleration [see Eq. (B15)], we can easily
integrate the delta function, reading

�(ω) = Z2 2h̄

EF

ω2v2/a2

(ω2v2/a2 + 1)2
. (20)

This result that has been obtained in the literature before
[34] using a different method based on reflection coefficients.
Equation (20) has a maximum at the frequency

h̄ωres/EF = 2α
c

v
(21)

corresponding to an efficient excitation of surface plasmons
of that frequency. We plot �(ω) in Fig. 3. From this figure,
we see that the dispersion shifts towards higher energies as
the speed of the moving electron decreases, in agreement with
Eq. (21). Looking at the frequency where the EEL spectrum
has a maximum, we can find the surface plasmon frequency.
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This frequency coincides with the interception of the ωspp

curve with the line ω = kzv, as can be seen in Fig. 4. This
allows to retrieve the wave number kz of the surface plasmon
associated with the ωres obtained from the EEL spectrum. We
note, however, that this process of exciting surface plasmons
does not produce a monochromatic wave, as can be anticipated
from the broadening of the EEL spectrum and from Figs. 2
and 4. Note that from the latter figure, we cannot attribute
a single wavelength to the potential disturbance. As we will
see, the motion of an electron parallel to a graphene sheet
is able to induce a monochromatic plasmon. In this context,
it is interesting to note that more than 50% of the energy
of the surface plasmon-polariton is located in the graphene
itself [35]. Therefore the incoming charged particle interacts
strongly with the electronic disturbance in graphene.

C. Motion parallel to the graphene sheet:
Kelvin and Mach wakes

We consider here the case of a charge moving parallel to
a graphene sheet at a constant height z0 (experimentally we
could consider an EEL experiment with a tilted graphene sam-
ple). The calculation of the potential when the charge moves
parallel to graphene follows from the Fourier representation of
the charge density. In this case, the calculation is simpler due
to the presence of two Dirac delta functions, but an integral
in the coordinates kx and ky still remains. Let us compute the
potential 
in(r,z,t) starting from


in(k,z,ω) = 2π
0v
2 e−k(|z|+z0)

ω2 − ω2
spp

δ(ω − vky). (22)

Note that the delta function implies that the particle disperses
with a frequency given by ω = vky .

Fourier transforming Eq. (22) to real space and time, we
obtain in polar coordinates


in(r‖,z,t) = 
0v
2
∫ 2π

0

dθ

2π

∫ ∞

0

kdk

2π

× e−k(|z|+z0)eik[r cos(θ−θ ′)−vt cos θ]

(k cos θv)2 + i sgn(cos θ )η − ak
, (23)

where θ ′ is the polar angle of r‖. Using the Sokhotski-Plemelj
theorem, it follows that (∼∫ stands for principal value of the
integral)


in(r‖,z,t) = 
0

∫ 2π

0

dθ

2π
∼
∫ ∞

0

dk

2π

e−kβeikγ

k cos2 θ − a/v2

− iπ
0

∫ 2π

0

dθ

2π

∫ ∞

0

dk

2π
e−kβeikγ sgn(cos θ )

× δ(k cos2 θ − a/v2). (24)

Let us introduce the change of variables k cos2 θ − a/v2 = κ ,
which modifies the integral to


in(r‖,z,t) = 
0

∫ 2π

0

dθ

(2π )2

e−f (θ)

cos2 θ
∼
∫ ∞

−a/v2
dκ

e−v2f (θ)κ/a

κ

− iπ
0

∫ 2π

0

dθ

(2π )2

e−f (θ)

cos2 θ
sgn(cos θ ), (25)

− − − − −

−

−

−

−

FIG. 4. Spectrum (top) and electrostatic potential (bottom) along
the direction of propagation of the moving particle. The particle
dispersion, given by ω = kv, is represented on the left image by
the orange line. It intercepts the SPP dispersion at k/kF = 0.00495,
corresponding to a SPP wavelength of λspp = 2π/k ≈ 2.3 μm.
This value matches well the distance between successive crests of
the potential, �y ≈ 2.4 μm. Changing the velocity of the particle
changes the slope of the orange line and therefore the wavelength
of the SPP, which turns into different distances between two
successive crests of the potential. The parameters are EF = 0.37 eV,
corresponding to an electronic density equal to 105 μm−2, v = 0.1c,
z0 = 0.01 μm, and t = 0 fs.

where β = |z| + z0, γ = [r cos(θ − θ ′) − vt cos θ ], and

f (θ ) = a

cos2 θv2
[β − iγ (θ )]. (26)

The principal value of the integral over κ gives the exponential
integral function, Ei(x), and the integral of the delta function
is elementary. It then follows that


in(r‖,z,t) = −
0

∫ 2π

0

dθ

(2π )2

e−f (θ)

cos2 θ
Ei[f (θ )]

− iπ
0

∫ 2π

0

dθ

(2π )2

e−f (θ)

cos2 θ
sgn(cos θ ). (27)

In Fig. 5, we show two examples of the electrostatic
potential induced by the charged particle moving parallel to
graphene at a distance z0 from it. It is evident that the surface
plasmons propagate in the form of ship wakes. Contrary to
conventional wisdom, ship wakes are not [36] necessarily
given by Kelvin theory and the same happens for plasmonic
wakes induced by the moving charge, as we shall see.
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FIG. 5. Electrostatic potential, in units of 
0, in graphene for
a particle moving parallel to it at z0 = 1 μm with speed v = 0.1c

(top panel; EF = 0.17 eV) and at z0 = 0.1 μm with speed v = 0.1c

(bottom panel; EF = 0.17 eV). The axes of the figures are in μm.
A Kelvin wake develops on the graphene sheet in the image of the
top panel. Indeed, in the top panel the half-opening angle is about
∼ (22.8 ± 0.3)o, whereas in the bottom one is about ∼ (16.8 ± 0.3)o.
Note that the electrostatic potential fluctuations are much larger for
the case depicted in the bottom panel, due to a closer proximity of the
moving charge to graphene. Also note the presence of a plane wave
in the central region of the wake (more evident in the bottom panel).
(The horizontal and vertical scales in the two panels are different.)

According to Kelvin theory, half of the angle of the cone of
a ship wake is given by

θK = arctan
1√
8

≈ 19.47o. (28)

In other words,, it is a constant number independent of the
speed of the ship. For future notice, it is important to clarify
how the opening angle of the plasmon wake is determined
from our simulations. For a fixed value of |r|, we first compute
from the electrostatic potential the three components of the

electric field as a function of the angle θ ′. Next, we then use
these results to compute the absolute value of the electric field
and fit a Gaussian of the form Ae−(θ ′−θmax)2/σ , where θmax is the
angle where the intensity of the electric field is maximum, and
A and σ are fitting parameters. The opening half angle is then
defined as the angle where the fitting function has the value
of 0.61 of its maximum, at a radial position value given by
|r| = (2 + 1/4)2πv2/a (other choices of |r| lead to the same
results). Using this procedure, and with the help of dimensional
analysis, we have found that half the aperture of the cone is
given with good accuracy by (in degrees)

θ ′ ≈ 1

δ

√
z0a

v2
≡ 1

δ

1

Frpl
(29)

for Frpl � 1, where δ is a real constant that we have found to be
of the order of δ ≈ 0.019 ± 0.001 (δ ≈ 1.09 for θ ′ in radians)
and Frpl is the plasmonic Froude number (see discussion in
Sec. V). We note that formula (29) should work well only in
the large Froude number regime and should be understood
as the first term in powers of 1/Frpl of a more complex
expression. From the numerical data, we have identified, a
transition from a Mach-type wavefront, where the opening
angle of the plasmon wake follows the law θ ∝ 1/v, at high
speeds (for the remaining parameters fixed) to a Kelvin-type
one, where the angle of the plasmon wake is independent of
the speed of the moving charge (see discussion ahead). Indeed,
for slow speeds compared to c (and small Froude numbers) the
wavefront is always Kelvin-like, that is, with an opening angle
for the wake independent of the speed of the moving charge.

A study of the evolution of the plasmon wake from Kelvin-
type to Mach-type is given in Fig. 6. Note the transition located
at Frpl ∼ 2 from a Mach-type wake to a Kelvin-type one, as
the Froude number decreases. The existence of such transition
was first pointed out by Shi et al. [37], who solved an identical
problem numerically, but without offering an interpretation to
the phenomenon as they were unable to identify the Froude
number for graphene. A study of the prediction given by
Eq. (29) and the estimation based on the procedure described
above is given in Table I. The agreement between the numbers
in the two rows is good for values of Frpl larger than 2, showing
that the ansatz θ = 1/(δFrpl) does a good job at predicting the
values obtained from the calculation of the absolute value
of the electric field. The last row gives the Froude number.
We have, therefore, gathered evidence for the existence of a
transition from Mach-type to Kelvin-type waves at a critical
Froude number of Frc

pl � 2 (note that the ratio v/c is not the
appropriate quantity to analyze this problem).

For the parameters considered in Fig. 6, and as noted above,
we have Frpl ≈ 2.3 for v/c = 0.25, the speed at which the
transition from the Mach-like to Kelvin-like regime occurs (for
the given parameters). Therefore the transition between the two
regimes is controlled by Froude number, with the transition
occurring roughly for Frpl ≈ 2. This result should be a generic
feature of plasmonic wakes in graphene. Finally, we note that
the region of Kelvin-type wakes has a constant angle (gray
dashed line in Fig. 6) of (21.4 ± 1.4)o, a value larger than that
predicted by Kelvin’s theory, but with Kelvin’s value within the
interval of uncertainty. This larger value of the opening angle
happens due to the definition we have used for determining it.
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TABLE I. Estimation of half the angle θest of the cone associated with the moving plasmons induced by a moving charge compared with
the prediction of equation θ ′ = 1/(δFrpl), with δ ≈ 0.019. Note that the validity of this formula is restricted to Frpl > 2. The parameters are
EF = 0.17 eV and z0 = 1 μm. Figure 6 plots the numbers of the table in a log-log scale. Also note the transition at about v/c ≈ 0.25. (See
text for the method used to estimate θest.) The last line gives the plasmonic Froude number (see discussion in Sec. V), Frpl = √

v2/(z0a). It is
clear that the criterion for the validity of formula (29) is related to the value of the Froude number: when Frpl � 2 the formula works well.

v/c 0.075 0.1 0.125 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0.6 0.7 0.8 0.95

θest 22.8 22.8 21.6 21.6 20.4 19.2 18 16.8 14.4 12 9.6 8.4 7.2 6
θ ′ 74 56 44 37 28 22.2 18.5 15.9 13.9 11.1 9.3 7.9 6.9 5.8
Frpl 0.68 0.91 1.1 1.4 1.8 2.3 2.7 3.2 3.6 4.5 5.4 6.3 7.2 8.6

Indeed, adopting a slightly different criterion, the angle values
would be slightly different, but the transition would occur at the
same Froude number (results not shown). That is, the existence
of a transition from Mach-like to Kelvin-like behavior does not
depend on the criterion used to define the opening angle of the
cone. We shall discuss more on all the above in Secs. III D
and V.

We can also compute the power added to the charged
particle using the expression P = ZeV · E(0,vt,z0,t), where
V = (0,v,0) and E = E(x,y,z,t). This means that we need to
compute the y component of the field, which follows from
Ey = −∂
in(r‖,z,t)/∂y. Once the electric field is known,
the power can be determined. The calculation is consistent
if the energy loss is small compared to the kinetic energy of
the particle. Since the field Ey(0,vt,z0,t) is time independent,
the power loss is also time independent. We have verified in
our numerics (results not shown) that the energy loss is of the
order of 2 meV, for a particle with speed v = 0.1c (kinetic
energy 2.5 keV) propagating over graphene for a distance of
3 μm. We note that the situation is different for the motion
of a charged particle perpendicular to the graphene plane due
to lack of translation invariance. In this latter case, the power
loss is time dependent.

Although numerical calculations are a powerful way to
accumulate understanding about a complex problem, much
insight can be gained from deriving analytical results, even
when they are only valid in special limits. In the present
section, we have conducted a fully numerical analysis of the
plasmonic wake. In the next section, two special limits are
considered where it became possible to obtain closed analytical
expressions for the shape of the wake.

D. Approximate analytical formulas for the plasmonic wake

In this section, we derive analytical formulas for the
plasmonic wakes valid in the limits az0/v

2 � 1 and
az0/v

2 
 1 (a similar problem has been considered in the
past for a charge moving near a metal-vacuum interface
[38]). The first limit corresponds approximately to the case
of the top panel of Fig. 5 (az0/v

2 � 1.2), whereas the second
limit corresponds to the bottom panel of the same figure
(az0/v

2 � 0.12). The exact form of the plasmonic wake
is given by Eq. (27). However, we are interested here in
obtaining approximate analytical expressions for the wake,
which can then be used to gain some insight on its properties.
To this end, we consider the asymptotic expression for the
Ei(z) function, which to leading order reads Ei(z) ∼ ez/z

(
z > 0). This shows that to leading order the first integral in

Eq. (27) is elementary and does not contribute significantly to
the form of the wake, as this comes from the exponential in
the second integral [a careful numerical study of both integrals
in Eq. (27) shows that this statement is only approximately
correct in some regimes]. In order to derive the needed
asymptotic expressions, we note that we need to compute the
real part of the following integral [ignoring, for the time being,
contributions coming from the first integral in Eq. (27)],

I2 = −iπ

∫ 2π

0
dθ

e
− az0

v2 cos2 θ e
iar cos(θ−θ ′ )

v2 cos2 θ

cos2 θ
sgn(cos θ ), (30)

which can be shown to equal


I2 = 2π

∫ π/2

−π/2
dθ

e
− az0

v2 cos2 θ

cos2 θ
sin

(
ar

v2

cos θ ′

cos θ

)

× cos

(
ar

v2

tan θ

cos θ
sin θ ′

)
. (31)

We now introduce the change of variable u = tan θ . This
implies that 1/ cos2 θ = 1 + u2 and du = sec2 θdθ . Therefore
the integral reads


I2 = 2πe−az0/v
2
∫ ∞

−∞
due−u2az0/v

2
sin

(ar

v2
cos θ ′√u2 + 1

)

× cos
(ar

v2
sin θ ′u

√
u2 + 1

)
. (32)

Next, we observe that for az0/v
2 � 1 the kernel of the integral

is strongly peaked at u = 0, due to the Gaussian exponential.
Therefore, in this regime, we introduce the approximation


I2 ≈ 2πe−az0/v
2
∫ ∞

−∞
due−u2az0/v

2
cos

(ar

v2
sin θ ′u

)

× sin
(ar

v2
cos θ ′(1 + u2/2)

)
, (33)

which, applying the exponential representation of the
trigonometric formulas, can be seen as a Gaussian integral,
which has the elementary solution


I2 ≈ −4π3/2e−β
�(√

2β − iγ e
−iγ− λ2

4β+2iγ

)
√

8β2 + 2γ 2
, (34)

where

β = az0

v2
, (35a)

γ = ar

v2
cos θ ′, (35b)

λ = ar

v2
sin θ ′. (35c)
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FIG. 6. Graphical representation of the data of Table I. (Top)
Note the transition at the Froude number Frpl ∼ 2 from Mach-type to
Kelvin-type of wake, as the Froude number decreases. The parameters
are z0 = 1 μm and EF = 0.17 eV, and the angle was measured at a
distance |r| = (2 + 1/4)2πv2/a (corresponding to two wavelengths
plus one quarter) from the apex of the cone. The error of the data
points was estimated to be 0.3o. Different parameters will give similar
curves to this one. The angle θest is estimated from the electric field,
for a given v/c ratio, as explained in the text. The dashed black line
represents the angle given by the formula θ = 1/(δFrpl) as function of
the Froude number (this formula only holds in the Mach-type region
of the Froude number). The horizontal dashed blue line represents
Kelvin’s result (see Sec. V for a more thorough discussion of the
role of the Froude number). The horizontal gray line is a fit to the
simulation data points in the Kelvin region (the transition from Mach-
like to Kelvin-like behavior is clearly seen to occur at the interception
of the gray and black dashed curves). The green dashed line is an
attempt to fit the simulation data points in Kelvin’s region with the
same expression used in the Mach region (this clearly fails to account
for the behavior of the data). (Bottom) Here we give an example of
the fitting procedure (see text for details). The dashed blue line is the
simulation data, the orange solid line is the fit of the data to a Gaussian,
and the dashed green line signals the value of 0.61 of the maximum of
the fitting function which approximately corresponds to the inflection
point of the curve (0.61 ≈ e−1/2). The interception of the horizontal
line with the solid curve defines the half angle of aperture of the
wake cone. The speed of the particle is v = 0.1c, EF = 0.17 eV, and
z0 = 0.1 μm, corresponding to a Froude number of Frpl = 2.86. In
this example, we have θest ≈ 196.8◦ − 180◦ = 16.8◦.

For obtaining the second term in Eq. (27) we have to divide
Eq. (34) by 4π2. The obtained expression is valid for arbitrary

large values of r and describes qualitatively the formation of
the wake due to the moving charge in its regime of validity. As
noted above, the first integral in Eq. (27) contributes little
to leading order in the form of the asymptotic expression
of the exponential integral function. However, the regime
az0/v

2 � 1 is likely to be experimentally challenging to
access (see discussion below). Therefore we would like to have
an equation holding in the regime az0/v

2 � 1. Fortunately, this
can be obtained treating the first integral approximately. The
procedure is similar to that described above, except that in the
end we still have to evaluate the additional integral coming
from the principal value of the integral in the variable κ . The
final result to the first integral in Eq. (27) reads (up to lowest
order in the expansion of the arguments of the trigonometric
functions)

I1 ≈ 

[ √

2(−2β + iγ )

π
√

(2β − iγ )2(2β + iγ )
D(s)

]
, (36)

where s = √
iφ + ψ and D(z) is the Dawson integral, D(z) =

e−z2 ∫ z

0 ey2
dy, and

ψ = β + 4βλ2

16β2 + 4γ 2
, (37a)

φ = γ (8β2 + 2γ 2 − λ2)

2(4β2 + γ 2)
. (37b)

Therefore the electrostatic potential (27) is approximately
given by the sum: I1 + (2π )−2
I2. This result is in quantitative
agreement with the exact fully numerical calculation of
equation (27). A better analytical approximation than Eq. (36)
to the first integral in Eq. (27) can be obtained, but the resulting
expression is too cumbersome to be given here.

Let us next consider the regime az0/v
2 
 1. In this case, the

integral is dominated by values of u in a large range centered at
u = 0. Therefore the arguments of the trigonometric functions
are expanded differently than before as


I2 ≈ 2πe−az0/v
2
∫ ∞

−∞
due−u2az0/v

2
sin

(ar

v2
cos θ ′|u|

)

× cos
(ar

v2
sin θ ′(u2 + 1/2)

)
. (38)

The integral can be expressed in terms of the error function,
erf(x), as


I2 ≈ −4π3/2e−βe
− βγ 2

2(β2+λ2) 


⎡
⎢⎣e

γ 2

4β+4iλ
+iλ/2erf

(
γ

2
√−β+iλ

)
√−β + iλ

⎤
⎥⎦.

(39)

Again, the previous expression is valid for an arbitrary large
r . It is interesting to note that the error function often appears
in diffusion problems. Whether the propagation of the surface
plasmons in this regime can be seen as a diffusion problem
requires more work. Also in this case, we can obtain an
expression for the first integral in Eq. (27). Proceeding as
briefly described in the regime az0/v

2 � 1, the expression for
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FIG. 7. Electrostatic potential, in units of 
0, in graphene for
a particle moving parallel to it at z0 = 1 μm with speed v =
0.1c (top panel; EF = 0.17 eV) and computed using equations
(34) and (36), and at z0 = 0.1 μm with speed v = 0.1c (bottom
panel; EF = 0.17 eV) and computed using equations (39) and (40).
Note the quantitative agreement between corresponding panels in
this figure and Fig. 5. The axes of the figures are in μm. The
electrostatic potential was computed using the formula 
in/
0 =
I1 + 
I2/(4π 2).

I1 reads

I1 ≈ −
[
√

β − iλe−serfi(s)]

π1/2
√

β2 + λ2
, (40)

where in this case s = (4β2 + γ 2 + 6iβλ − 2λ2)/(4β + 4iλ)
and erfi(z) is the complex error function. As before, the
electrostatic potential (27) is approximately given by the sum
I1 + (2π )−2
I2.

To compare the asymptotic expressions to the exact results
we depict in Fig. 7, the same wakes shown in Fig. 5 but
computed using Eqs. (34) and (36), and Eqs. (39) and (40).

It is clear that the shape of the approximated wakes given
in Fig. 7 is in qualitative agreement with the wakes depicted in
Fig. 5. The agreement between the wake for z0 = 1 μm is only
qualitatively accurate since the ratio az0/v

2 � 1.2 is not in the
regime az0/v

2 � 1. Had we chosen a larger z0, or a smaller
v, the agreement between the two wakes would have been
quantitatively better. In particular, we note the disagreement
in the value of the opening angle of the wake’s cone (larger
in the approximate wake). In the case of the bottom panel of
Fig. 7, the agreement with the bottom panel of Fig. 5 is quite
good, since in this case the wake for z0 = 0.1 μm is more
accurate, given that the ratio az0/v

2 � 0.12 can be considered
to fulfill the condition az0/v

2 
 1. Indeed, in both cases, the
cone of the wake has the same coordinate y ≈ ±2 μm, for
x = −15 μm. It is also clear that the form of the wake in
this regime differs considerably from the previous one. This
is a striking manifestation of the two aforementioned regimes.
The existence of these two regimes was put in evidence in the
numerical studies of Table I and Fig. 6.

It is clear from this analytical analysis that there is a
transition in the shape of the wake around az0/v

2 ∼ 1, which
is precisely the parameter that enters in the formula (29),
proposed based on intuition, numerical, and dimensional
analysis. Therefore the regime az0/v

2 � 1 defines the Kelvin-
like behavior of the wake, whereas the opposite regime defines
the Mach-like behavior.

If we zoom out the wake in the top panels of Figs. 5 and 7, we
can clearly identify the presence of a plane wave superimposed
on the wake. This is also evident in the bottom panel of Fig. 5.
This plane wave exhibits a number of crests and valleys. We
note that the number of nodes and crests in the approximated
wakes coincide with the same quantity in the exact wakes.
Indeed if in Eq. (33), we make the approximation (since in this
case the integral is dominated by values of u ≈ 0)

sin
(ar

v2
cos θ ′(1 + u2/2)

)
≈ sin

(ar

v2
cos θ ′

)
, (41)

it is then clear that we have superimposed to the wake pattern
a plane wave of the form sin(ar cos θ ′/v2) = sin(ax/v2).
Considering the case of the top panel of Fig. 7, we have the
ratio a/v2 ≈ 1.2 μm−1. Therefore the wavelength of the wave
reads λ ≈ 2πv2/a ≈ 5 μm, meaning that within a propagation
distance �x = 20 μm we should have four crests, which is
exactly what is seen in the top panels of Figs. 5 and 7. The
number of crests and valleys seen in the bottom panel of Fig. 5
is three, since �x = 15 μm. We note the absence of the plane
wave pattern in the wake of the bottom panel of Fig. 7; this
is a consequence of the approximation of the argument of the
sine-function used in the limit az0/v

2 
 1 (we have used a
large u expansion and the plane wave depends on the small u

values, as seen in the previous equation).
In Fig. 8, we show the electrostatic potential, 
/
0, along

the direction θ ′ = π (y = 0). The agreement between the exact
and the approximated formulas is excellent. Note, in the central
panel, the missing plane-wave oscillations in the approximated
result for large Froude number; the reason for this has been
discussed already. However, if we decrease z0 for increasing
the Froude number, the wavelength of the plane wave becomes
very large and agreement between the approximated and nu-
merically exact solutions is excellent. The agreement between
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FIG. 8. Comparison of the exact and approximated expression
for the potential, in units of 
0, along the direction θ ′ = π . The
parameters are the same as in Fig. 7. In the top panel, the Froude
number is Frpl = 0.90 and in the central and bottom ones is Frpl =
2.86. Note the excellent agreement of the approximated result in the
top panel, even though the Froude number is only slightly smaller than
1. Also note that in the central panel, for moderate Froude number,
the plane wave is missing in the approximated curve [computed using
Eqs. (39) and (40)]; the reason for this is discussed in the text. In the
bottom panel, we improved over the approximation of the central
panel using Eqs. (34) and (42). However, this level of approximation
is only valid in the regime az0/v

2 � 1 where the plane wave is well
developed. All the approximated curves were computed using the
formula 
in/
0 = I1 + 
I2/(4π 2).

the approximated curves and the numerical exact ones is also
good for values of y �= 0 (results not shown). The fact that the
plane wave is missing in the limit of large Froude numbers hints
that the approximation of the arguments of the trigonometric

functions by their values in the limit u → ∞ is too drastic.
This conclusion suggests keeping for the value of 
I2 the same
dependence that is used in the limit of small Froude number,
since this part contains the plane wave, that is, we use Eq. (34)
for 
I2. As for the integral I1 we expand the arguments of
the two cosines differently: the one responsible for the plane
wave is expanded in the limit of small u, whereas the other
is expanded in the limit of large u. With this procedure, we
obtain for I1 the result

I1 ≈
√

π/2

4π2

[
e−s1/2

√
2β − i(γ − 2λ)

f (s1/2) + c.c.

]

+
√

π/2

4π2

[
e−s2/2

√
2β − i(γ + 2λ)

f (s2/2) + c.c.

]
, (42)

with s1 = 2β − 2iγ + iλ, s2 = 2β − i(2γ + λ), and

f (z) = iπerf[i
√

|z|eiarg(z)/2], (43)

where arg(z) is the argument of the complex number z and

z > 0. This last result for I1 together with Eq. (34) prove
to be accurate in the regime az0/v

2 � 1, as seen in the
bottom panel of Fig. 8. Therefore this approach includes
the plane wave present in the wake at intermediated Froude
numbers. However, being exceptionally good in describing
the θ ′ = π case, this approximation does not excel for
moderate to large angular deviations from θ ′ = π , as it
underestimates the amplitude of the plane wave along these
directions.

From the previous analytical study, we learn that the plane
wave existing in the wake has its wavelength controlled
by the value of v2/a and while z0 plays no immediate
role in this. From the analytical solution we also learn that
the effect of the moving charge on the plasmonic wake
diminishes exponentially with z0 due to the exponential factor
e−az0/v

2
. Therefore the regime az0/v

2 � 1 is likely to be
experimentally challenging as the charge fluctuations are
exponentially suppressed. This is also clear from the vertical
scales of Fig. 7. From the previous discussion, it is obvious
that the dimensionless ratio z0a/v2 plays a fundamental role
in determining the nature of the wake. As argued in Sec. V
this quantity is related to the Froude number of plasmonic
wakes induced by the Coulomb dragging effect of the passing
charge.

Equation (39) can also be used to motivate Eq. (29). The
procedure is somewhat delicate and we only outline the main
steps. Firstly, we expand this equation in powers of the Froude
number followed by an expansion in powers of 1/

√
r when

r → ∞. We then gather the terms that decay slower with
r—those proportional to 1/

√
r (the other terms are discarded,

that is, we make the far field approximation). Secondly, we
expand the resulting function (the amplitude of the spatial
dependent trigonometric function) around θ ′ = π and obtain
a function f (θ ′). Since we seek the maximum of the potential,
we take the derivative of f (θ ′) and identify its zero f ′(θ ′) = 0.
Solving the previous equation for θ ′ gives the position of the
first maximum of the potential, which within the approxi-
mation of Eq. (39), reads θ ′ = π ± √

5/(2Frpl). This has the
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FIG. 9. A graphene sheet enclosed in a metallic waveguide and
suspended over a trench. The tip of an electronic microscope injects
electrons in the waveguide and the passing through electron excites
localized plasmons in graphene. If one bores a hole—graphene
channel—in the metallic waveguide and let graphene occupy the
hole and connects it to an external graphene sheet, this architecture
can act as a source of graphene plasmons.

correct order of magnitude we found from the fit made in
Fig. 6.

IV. SOURCE OF GRAPHENE PLASMONS

Next, we return to the problem of a charged particle moving
perpendicularly to a graphene sheet. In this section we consider
a rectangular waveguide, of cross-section area A = LxLy ,
where Lx and Ly are the sides of the rectangle, as depicted
in Fig. 9. A microrectangle of graphene is in the middle of
the waveguide and an electron is sent along the axis of the
waveguide. The waveguide will support discrete graphene
plasmonic modes, which can be excited by the passing
electron. The goal of this section is to determine the EEL
spectrum of the microrectangle of graphene. This method will
allow to probe and excite discrete plasmonic resonances in
graphene.

This architecture can also be used as a source of plasmons.
The idea is conceptually simple: a hole is bored in the
metallic waveguide, such that a graphene ribbon extends
itself outside the waveguide and connects to an external
graphene sheet. The plasmons, once excited in the suspended
graphene drum skin will propagate away from the drum
though the channel connecting the drum to the external
graphene sheet. Choosing drums of different shapes and sizes
allows to span a vast spectral range of graphene plasmons.
Note that the graphene drum supports in-plane oscillations
(compressible charge-density waves), rather than out-of-plane
displacements (of the skin) common to the classical sound
drum.

For solving this problem, we have to consider, in addition
to the hydrodynamic model, equations (B9), the boundary
conditions introduced by the waveguide walls, that is,

∂


∂x

∣∣∣∣
y=0

= ∂


∂x

∣∣∣∣
y=Ly

= 0, (44a)

∂


∂y

∣∣∣∣
x=0

= ∂


∂y

∣∣∣∣
x=Lx

= 0, (44b)

vy(y = 0) = vy(y = Ly) = vx(x = 0) = vx(x = Lx) = 0.

(44c)

In other words, we consider a perfect metallic conductor
so that the tangential component of the electric field is null at
the waveguide walls and the perpendicular component of the
electronic current is null at the graphene boundary.

A. Discrete plasmon dispersion

Firstly, we consider the plasmonic solutions of the hydro-
dynamic model. The potential can be conveniently expanded
in a Fourier series as


in(x,y,z) =
∞∑

n,m=1

Anm sin

(
nπx

Lx

)
sin

(
mπy

Ly

)
e−knm|z|,

(45)
where

knm =
√(

nπ

Lx

)2

+
(

mπ

Ly

)2

. (46)

Integrating Poisson’s equation (B9b) with respect to the z

coordinate, we have

n1(x,y,ω) = −2ε0

e

∞∑
n,m=1

Anm(ω)knm

× sin

(
nπx

Lx

)
sin

(
mπy

Ly

)
, (47)

and the velocity components can be calculated with Eqs. (B9c)
and (44c):

vx(x,y) = 2ε0

e

iω

n0

∞∑
n,m=1

Bnm cos

(
nπx

Lx

)
sin

(
mπy

Ly

)
,

(48a)

vy(x,y) = 2ε0

e

iω

n0

∞∑
n,m=1

Cnm sin

(
nπx

Lx

)
cos

(
mπy

Ly

)
,

(48b)

with the amplitudes Anm, Bnm, and Cnm related via

Anmknm = Bnm

nπ

Lx

+ Cnm

mπ

Ly

. (49)

Lastly, using Eq. (B9), the discretized version of the
plasmon dispersion relation (B15) follows:

2αEF h̄cknm + v2
F h̄2

2
k2
nm = h̄2ω2

nm. (50)
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Quite intuitively, this solution for the plasmons spectrum
describes localized surface plasmons in the graphene sheet,
in the form of standing waves.

B. Motion of a charge along the axis of symmetry of the
waveguide: Charge density fluctuation and EEL spectrum

Following the steps of Sec. III A, we consider the presence
of an electron, moving parallel to the axis of the waveguide,
and impinging perpendicularly on the graphene sheet. The
density of external charge is given by

ρext = Zeδ(x − x0)δ(y − y0)δ(z − vt), (51)

which corresponds to a charged particle with velocity v aimed
at the point (x0,y0) on the graphene surface.

The electric potential follows from solving Poisson’s
equation ∇2φext = −ρext/ε0 with the boundary condition (44):


ext(x,y,z,ω) = 4Ze

ε0LxLyv

∞∑
n,m=1

φnm(z) sin

(
nπx

Lx

)

× sin

(
mπy

Ly

)
, (52)

with (
∂2
z − k2

nm

)
φnm(z) = −unme−iωz/v. (53)

Here we have used the completeness relation to rewrite the
Dirac delta function as

δ(x − x0) = 2

Lx

∞∑
n=1

sin

(
nπx

Lx

)
sin

(
nπx0

Lx

)
, (54)

with a similar expression for δ(y − y0), and we have defined
unm = sin(nπx0/Lx) sin(mπy0/Ly).

Equation (53) can be solved with the Green’s function
method as in Eq. (3), leading to

φnm(z) = − unm

(ω/v)2 + k2
nm

e−iωz/v. (55)

Taking the divergence of Eq. (1a), with the density given by
the Fourier expansion (47) and using the continuity equation
after a Fourier transform in time, we arrive at

2ε0

e

∑
n,m=1

Anm

(
ω2 − ω2

nm

)
knm sin

(
nπx

Lx

)
sin

(
nπy

Ly

)

= −n0ev
2
F

EF

∇2
ext(z = 0), (56)

with ωnm given by Eq. (50). Finally, after projecting Eq. (56)
onto one of the basis functions, we find

Anm = 8
0
v

LxLy

v2
F

EF

knm

ω2 − ω2
nm

φnm(0). (57)

The knowledge of Anm allows us to first compute n1(x,y,ω)
and from this the determination of n1(x,y,t) is possible after
a Fourier transform. The determination of the velocity field
requires the knowledge of the coefficients Bnm and Cnm, which
can be calculated using the density (47), the velocity (48), the
electrostatic potential (45) and (52), into Eq. (B10) and using

the dispersion relation (50), giving

Bnm = nπ

Lx

Anm

knm

, (58a)

Cnm = mπ

Ly

Anm

knm

. (58b)

Note that Eq. (B10) is vectorial, thus allowing for the
determination of the two previous coefficients.

In Fig. 10, we depict the electronic density n1(x,y,t) on the
drum, for ascending times, induced by an electron transversing
graphene at a speed of v = 0.1c corresponding to a kinetic
energy of 2.5 keV. We emphasize that this energy value is of
the order of the energy used in SEM imaging of graphene and
therefore would cause little to none damage to the material. We
stress that the knock-on-threshold for electrons in graphene is
much larger, close to 80 keV). Note in this figure the evolution
of the charge density from initially circular concentric waves
at the center of the drum (for shorter times) to interference
fringes (at larger times), due to reflection at the boundaries
of the drum. In the presence of the channel (see Fig. 9), the
plasmonic wave reaches the boundary of the drum and some
of the plasmon frequency components will propagate through
the channel outwards. Note that in Fig. 10, the electron hits
the drum at its center. By choosing a different impact point
we may relax reflection symmetries of the problem, thus in
turn producing more directional waves (results not shown).
In passing, we note that such directional waves could also
be explored in nonintegrable geometries, such as chaotically
shaped billiards, or by turning from graphene to anisotropic
2D materials.

The EEL spectrum can be calculated using the same
definition and method used in the previous section and reads

�(ω) = �0

ω

∞∑
n,m=1

δ(ω − ωnm)
k2
nmu2

nm

[ω2 + (knmv)2]2
, (59)

with

�0 = 32π2α2h̄c2 n0v
2
F v2

LxLyEF

. (60)

The emergence of Dirac delta functions in the EEL spectrum
guaranties that a single electron can excite multiple plasmon
modes, albeit with different weights.

In the limit Lx = Ly → ∞, the sums are conveniently
converted into an integral:

�(ω) = �0

ω

LxLy

π2

∫ π/2

0
dθ

∫ ∞

0
kdkδ(ω − ωk)

k2u2(k,θ )

[ω2 + (kv)2]2
.

(61)

We have to perform the integral over the delta function, which
is elementary, and the angular integral, leading to

�(ω) = �0
LxLy

π2

∫ π/2

0
dθ

2ω2u2(ω2/a,θ )

(a2 + v2ω2)2

= 2h̄

EF

v2ω2/a2

(1 + v2ω2/a2)2
. (62)
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FIG. 10. Induced electronic density fluctuations n1(x,y) in the graphene drum for t = 0.1 fs + 18(n − 1) fs, where n is the number of the
panel (ordered by rows from left to right). The parameters are v = 0.1c, EF = 0.37 eV, and Lx = Ly = 3 μm. Note the evolution of the density
from a circle for short times and the development of interference fringes for larger times. The blue and red colors correspond, respectively,
to negative and positive charge density fluctuations n1(x,y) relatively to the homogeneous charge density n0. Note that the wavelength of the
plasmons when they are first created is much smaller than the size of the drum. It is therefore conceivable that they can escape through a
graphene channel drilled in the walls of the waveguide. The figures present a high degree of symmetry because the impact point chosen for the
electron is the center of the square.

As before, we have written ωk = √
ak (recall that a has unit of

acceleration) and used the limit (choosing x0 = y0 = Lx/2),

lim
Lx→∞

16

π

∫ π/2

0
dθu2(ω2/a,θ ) = 2 . (63)

We have therefore recovered the result for a continuous
graphene sheet, given by Eq. (20).

In Fig. 11, we depict the EEL spectrum of a graphene
drum, given by Eq. (59). It is clear from this figure that a
single electron can excite more than one surface plasmon
mode. This is evident from the presence of several peaks in the
EEL spectrum at different frequencies. This effect has already
been seen in the excitation of localized plasmons in graphene
nanostructures [34]. Also note that there is an optimal speed
for the more efficient excitation of plasmons. For the first
peak (at low frequencies), the optimal speed is in the interval
v ∈ [0.1c,0.2c].

V. DISCUSSION AND CONCLUSIONS

We have considered the problem of the excitation of
surface plasmons in graphene by a fast moving charge. We
have analyzed two cases: (i) when the charge is moving

FIG. 11. EEL spectrum of a graphene square drum (Lx = Ly =
3 μm) as function of the speed of the moving charge and of the
frequency. If we draw a horizontal line throughout the figure we obtain
the EEL spectrum for a given speed. It is clear that this cut produces
a new figure with peaks at certain frequencies, corresponding to the
excitation of the localized plasmons in the drum. We have considered
a Fermi energy of EF = 0.37 eV and have broaden the delta functions
to Lorentzians with a relaxation rate of 4.1 meV.
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perpendicular to the graphene sheet and (ii) when the charge
is moving parallel to the graphene sheet. In the first case
we have computed the EEL spectrum [33] and found that
surface plasmons from a continuum of wave numbers are
excited by this method. The excitation of surface plasmons
of different frequencies has been discussed in the literature
before [34] in the context of graphene-based nanostructures.
In this reference it is shown that, for continuous graphene, the
EEL spectrum has a maximum at (in agreement with our result)
h̄ω/EF = 2αc/v implying that the frequency maximum shifts
to higher frequencies as v decreases, as seen in Fig. 3. Taking,
for example, v/c = 0.01, the previous result implies that
h̄ω/EF ≈ 1.5, which agrees with Fig. 3. As we have seen,
in the case of an infinite graphene sheet the EEL spectrum has
broad resonances, which is an indication of the simultaneous
excitation of plasmons of different energies. In the second
case, the moving charge induces a plasmonic wake as it moves
over graphene.

Contrary to what could have been expected, the wake
induced by the moving charge is not necessarily of Kelvin
type and can also be of Mach type, where the angle of the
cone of the charge wake is proportional to the inverse of the
speed of the moving charge and therefore can be much smaller
than the value predicted by Kelvin theory. We have shown
that there is a transition Froude number from Kelvin to Mach
type of ship wakes. These two different possibilities have been
observed in real ship wakes and the transition is controlled by
the Froude number [36], Fr =

√
U 2/(Lg), where U is the ship

speed, L is the hull ship length, and g is the acceleration
of gravity. We have noted in our graphene problem, the
dimensionless number az0/v

2 determines the transition from
the Mach-like to Kelvin-like regimes. Therefore we interpret
Frpl =

√
v2/(z0a) as the Froude number for the plasmonic

wakes in graphene, where the “acceleration” a depends on
the Fermi energy of graphene, and controls the dispersion of
graphene plasmons. The value Frpl ∼ 2 defines the transition
region from Mach-type, Frpl � 1, to Kelvin-type, Frpl 
 1,
regimes.

As noted, we have gathered numerical evidence of a critical
Froude number that signals the transition from Mach-type
to Kelvin-type of wakes, whose value reads approximately
Frc

pl ≈ 2. This value is about 4 times larger than the critical
Froude number in ship wakes [36]. On the other hand, for
pointlike objects immersed in a fluid, the critical Froude
number has been found to be larger than 2 [39], in agreement
with our results. We note that the way the apparent opening
angle of the wake is measured does not influence the value of
the Froude number at which the transition occurs. See Ref. [39]
for a different method from ours of measuring the angle.
Interestingly, the parameter a also depends on the dielectric
constant of the environment. This introduces an additional
degree of freedom, besides the tunning of the Fermi energy, to
gain control over the Froude number, a situation that has no
parallel in ship wakes.

We end this part of the discussion noting that the group
velocity of the plasmons in graphene reads vg = d

√
ak/dk =

1
2

√
a/k = 1

2

√
aλsp/(2π ). On the other hand, gravity waves

in deep waters propagate with a group velocity vw =
1
2

√
gλ/(2π ). We note that vg and vw are identical, except

that in vg we have λsp being the wavelength of the surface
plasmon. It is therefore not so surprising that the same physics
we find in ship wakes has also been found in surface plasmon
wakes as long as the distance of the charged particle to the
graphene sheet z0 plays the same role as the hull ship length
L. This latter possibility was not evident from the outset.

Our calculations are valid for suspended graphene. It would
be interesting to extend them for graphene on hexagonal
boron nitride for discussing the excitation of phonon-plasmon-
polaritons. This is an important topic for nanophotonics [40].
Also, extending this work to multilayer graphene [41] is a
natural continuation of this work.

We have also discussed the formation of localized plasmons
in a graphene drum in a metallic waveguide. As noted, the
system can be used as a plasmon source of collimated beam.
We explored the rectangular drum, but a circular drum is also
feasible and it will originate plasmons of different frequencies.
We note that since for waveguides of the order of 1 μm
its cutoff frequency is in the near-IR, the electron, once in
the waveguide, can only radiate above this cutoff frequency.
Therefore all radiation that appears below this frequency is
plasmonic in nature and there will be no transition radiation
in that frequency range, at least for deep enough waveguides,
compared with the plasmon confining length in the transverse
direction. Also, we have considered the simple case where
the electron impinges at the center of the square. If we
had considered a different impinging point then we would
have created highly directional plasmons oriented toward the
channel that conducts the plasmons out of the drum. If below
graphene we deposit a metallic film at a distance of one or two
layers of hexagonal boron nitride, then graphene will support
strongly confined plasmons, akin to acoustic plasmons in a
continuous graphene sheet. This setup would work as a source
of acoustic plasmons.

We can consider the graphene drum a plasmonic billiard,
which presents a characteristic spectrum distribution as func-
tion of frequency. Both in classical and quantum billiards, it is
well known that depending on their geometry, the trajectories
(classical) and spectrum (quantum) can be chaotic. It would
be interesting to study the spectrum distribution of plasmonic
billiards in the future.

Note added. After the submission of this paper we became
aware of a similar work [42], but in the field of fluid
dynamics.
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APPENDIX A: FROM BOLTZMANN EQUATION
TO EULER’S EQUATION OF HYDRODYNAMICS

In this section, we derive Euler’s equation for fluid
motion starting from the Boltzmann equation. Let us assume
an electron gas characterized by the distribution function
f (r,v)drdv, which specifies the number of particles in the gas
having position and velocity centered at r and v, respectively,
in the small volume dr and in the small velocity range dv. We
can introduce a six-dimensional phase-space vector w = (r,v)
whose time rate reads ẇ = (ṙ,v̇). If the forces are conservative
then v̇ = −∇
, where 
 is the potential energy per unit mass.
The time evolution of the distribution function f (r,v) is given
by the Boltzmann equation [43]

∂f

∂t
+ v · ∂f

∂r
+ g · ∂f

∂v
= 0, (A1)

where collisions have been excluded, and g represents the
external forces per unit mass. The previous equation is
called the collisionless Boltzmann equation. Adding collisions
amounts to adding a term of the form γ (t) to the right-hand
side of this equation. Boltzmann’s equation is six-dimensional
in phase space and has more information that we actually
need. Since we want to know the position of the particles as
function of time we can integrate Boltzmann equation over
the coordinate v. Next, we will compute the first and second
moments of the Boltzmann equation. To that end, we introduce
the mass density using the relation [43] (we are assuming all
particles equal with mass m)

ρ(r) =
∫

dvf (r,v)m (A2)

and the velocity moment via [43]

〈vi〉 = 1

ρ(r)

∫
dvf (r,v)mvi. (A3)

It is also convenient to introduce the second moment of the
velocity as [43]

〈vivj 〉 = 1

ρ(r)

∫
dvf (r,v)mvivj . (A4)

Let us now take the zero moment of the Boltzmann equation∫
dv

[
∂f (r,v)

∂t
+ v · ∂f (r,v)

∂r
+ g · ∂f (r,v)

∂v

]
= 0 (A5)

from where it follows the continuity equation

∂ρ(r)

∂t
+ ∂

∂r
· [ρ(r)〈v〉] = 0 (A6)

stating mass conservation, and where we have used the
divergence theorem leading to the following identity:∫

V

dv
∂f (r,v)

∂v
=

∫
S∞

f (r,v)dSv = 0, (A7)

where f (r,v) = 0 over a surface at infinity, S∞.
Let us next consider the first moment of the Boltzmann

equation∫
dvv

[
∂f (r,v)

∂t
+ v · ∂f (r,v)

∂r
+ g · ∂f (r,v)

∂v

]
= 0, (A8)

which can be simplified to

∂

∂t
[ρ(r)〈v〉] +

∑
i

∂

∂xi

[ρ(r)〈vvi〉] − gρ(r) = 0, (A9)

where the third term was computed using integration by parts.
This last equation is called the momentum equation. We now
introduce the tensor τ 2

ij = 〈vivj 〉 − 〈vi〉〈vj 〉. This conveniently
allows us to write the term with the second moment in
terms of products of first moments. Subtracting from the
momentum equation the continuity equation, we obtain for
each component

ρ(r)
∂〈vj 〉
∂t

+ ρ(r)
∑

i

〈vi〉∂〈vj 〉
∂xi

= gjρ(r) −
∑

i

∂
[
ρ(r)τ 2

ij

]
∂xi

(A10)
or in vectorial terms

ρ(r)
∂〈v〉
∂t

+ ρ(r)(〈v〉 · ∇)〈v〉 = gρ(r) − ∇P, (A11)

where P is the pressure in the gas. The last equation is Euler’s
equation of fluids dynamics and is the starting point for the
hydrodynamic model of plasmons in metals and in graphene.
We should stress that the derivation of Eq. (A11) assumed a
finite effective mass m for the particles in the gas. Adapting this
equation for graphene will require the introduction of graphene
electrons’ Drude mass mg = h̄kF /vF , which links the Fermi
momentum h̄kF to the Fermi velocity vF ; both well-defined
properties associated with the linear dispersion of massless
Dirac fermions in graphene. This choice makes sense since
we are describing transport properties: for a 2D electron gas
with quadratic dispersion, the Drude conductivity depends on
the effective mass m of the electron, whereas in graphene
the same quantity depends on the mass mg . Therefore it is
permissible to replace m by mg in the hydrodynamic equation
[21]. A note is in order here: we have formulated the problem
with the aid of velocity fields which is a natural choice for
massive particles. Naturally, we could also have formulated
the equation of motion in terms of the momentum fields in
which case we would have arrived at the same final equation,
but without the need to assign a Drude mass to the electrons
in the graphene.

APPENDIX B: HYDRODYNAMIC MODEL FOR DOPED
GRAPHENE IN THE ELECTROSTATIC REGIME

The hydrodynamic model of the electromagnetic response
of an electron gas couples Euler’s equation (see Appendix A for
a derivation starting with Boltzmann’s equation) to Maxwell’s
equations [20,21,26,27]. To emphasize the 2D nature of the
problem, we will in the following introduce r = (r‖,z) with r‖
being a 2D position vector in the plane of the graphene (z = 0),
while z is in the direction perpendicular to the graphene layer.
If we introduce the density of particles in the gas per unit area
as n(r‖) then the mass density is defined as ρ(r‖) = mn(r‖),
where m is the mass of the particle and r‖ is the 2D position
vector. In terms of n(r‖) Euler’s equation reads (where we have
dropped the average symbol for simplicity; see Appendix A)

mn(r‖)
∂v
∂t

+ mn(r‖)(v · ∇)v = gmn(r‖) − ∇P. (B1)
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If scattering is allowed, then a term of the form mn(r)v/τ must
be included in the left-hand side of the previous equation,
and where τ is a relaxation time taking into account the
nonconservation of momentum. The physics of this added
term stems for the electron-phonon and electron-electron
interactions. We now consider that there is an external electric
field applied to the electron gas. This changes Euler’s equation
to

mn(r‖)
∂v
∂t

+ mn(r‖)(v · ∇)v = en(r‖)∇φ(r‖,z = 0) − ∇P,

(B2)
where e is the elementary charge, φ(r) = φ(r‖,z) is the
electrostatic potential, and the electric field follows from
E = −∇φ(r).

Since we are dealing with an electron gas, the simplest
approximation for the pressure is the statistical pressure
encoded in the kinetic energy of the electron gas. For graphene,
the determination of the pressure (force per unit length in
2D) requires the calculation of the kinetic energy of the
noninteracting gas as

Kg = 4A

∫
dθkdk

(2π )2
vF h̄k = vF h̄

2

3π
π3/2N3/2

e A−1/2, (B3)

where Ne in the total number of electrons, A is the area of
the system, and we have expressed the Fermi momentum in
graphene by kF = √

πn0, where n0 is the 2D particle density.
It follows that the pressure is given by

P = −∂Kg

∂A
= vF h̄

1

3π
(πn0)3/2. (B4)

Note that the previous quantity is a 2D pressure. Next, we
consider that the pressure in the inhomogeneous gas has the
same functional form in terms of density as that given by
the previous equation. Using this assumption, we can now
compute the gradient of the pressure as

∇P = vF h̄ 1
2

√
πn(r‖)∇n(r‖). (B5)

Dividing the pressure by the graphene’s Drude mass we obtain
Euler’s equation of motion for graphene as

∂v
∂t

+ (v · ∇)v = evF

h̄kF

∇φ(r‖,0) − v2
F

2n(r‖)
∇n(r‖), (B6)

where the electrostatic potential depends on r but is evaluated
at the point in graphene given by r = (r‖,0). The other two
equations defining the hydrodynamic model in the electrostatic
limit are Poisson’s equation

∇2φ = − e

ε0
[n+ − n(r‖)]δ(z), (B7)

where n+ is the ionic charge density neutralizing the electron
gas, and the continuity equation

∂n(r‖)

∂t
+ ∇ · [n(r‖)v] = 0 (B8)

stating charge conservation in the graphene sheet.
We now linearize the hydrodynamic equations, assuming

n(r‖) ≈ n0 + n1(r‖) (we note in passing that for metals we
have n0 � n1; for graphene, however, this is not the case
when the system is near the neutrality point; in this paper, we
will be far from this regime) and φ(r‖) ≈ φ0(r‖) + φ1(r‖), and

noting that v is already a linear order quantity. This leads to
the linear hydrodynamic model

∂v
∂t

= evF

h̄kF

∇φ1(r‖,0) − v2
F

2n0
∇n1(r‖), (B9a)

∇2φ1(r) = e

ε0
δ(z)n1(r‖,0), (B9b)

0 = ∂n1(r‖)

∂t
+ n0∇ · v. (B9c)

Note that the second term on the right-hand side of
Eq. (B9a) is proportional to 1/n0 and therefore can rightfully
be considered a correction to the first term. Indeed, we can
rewrite this equation as

∂v
∂t

= ev2
F

EF

∇φ1(r‖,0) − π

2

h̄2v4
F

E2
F

∇n1(r‖), (B10)

which shows that the second term on the right-hand side of
this equation is of higher order in powers of 1/EF . Also the
presence of h̄2 in the second term signals the presence of a
correction of quantum nature.

Spectrum of the surface plasmons

For solving the previous three equations, we introduce the
Fourier transform in the plane (note that here k is the in-plane
2D wave vector),

v(r‖,t) =
∫

dωdk
(2π)3

v(k,ω)ei(k·r‖−ωt), (B11)

and equivalent definitions for the pairs of transforms
[n1(r‖,t); n1(k,ω)] and [φ1(r‖,z,t); φ1(k,z,ω)]. Using the
Fourier transforms in the hydrodynamic equations, we obtain

−iωv(k,ω) = evF

h̄kF

ikφ1(k,0,ω) − v2
F

2n0
ikn1(k,ω) (B12a)

for Euler’s equation,(
∂2

∂z2
− k2

)
φ1(k,z,ω) = e

ε0
δ(z)n1(k,ω) (B12b)

for Poisson’s equation, and

0 = −iωn1(k,ω) + n0ik · v(k,ω) (B13)

for the continuity equation. Note that Eq. (B12b) is nothing but
the Green’s function. For obtaining φ1(k,z,ω), we assume that
φ1(k,z,ω) = Ae−kz, for z > 0 and φ1(k,z,ω) = Bekz for z <

0. The coefficients A and B are determined from the boundary
conditions: A = B and −k(A + B) = e

ε0
n1(k,ω), which imply

that

A = − e

2kε0
n1(k,ω). (B14)

Using the last result in Eq. (B12a), it follows a relation between
v(k,ω) and n1(k,ω). Using this relation in the continuity
equation (B13), we obtain

h̄2ω2
spp =

(
2αEF h̄ck + v2

F h̄2

2
k2

)
≈ 2αEF h̄ck, (B15)

where α is the fine structure constant, with the approximate
result valid for realistic (k < kF ) wave numbers. We have,
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therefore, recovered the well-known result for the square-root
dispersion of graphene surface plasmons in the electrostatic

limit [44]. This is consistent with a small-wave-number
expansion of the intraband part of the RPA result.
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