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Analytical Dirac model of graphene rings, dots, and antidots in magnetic fields
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Circularly symmetric graphene nanostructures exist in the form of graphene rings, dots, and antidots. For
realistic structure sizes, atomistic studies typically become prohibitively demanding. Analytical results, however,
can be found within the Dirac-equation approach even in the presence of a perpendicular magnetic field. We model
nanostructure confinement by using a circularly symmetric mass term and analyze the influence of geometry,
magnetic field, and mass term on the eigenstates. Excellent agreement with atomistic models for small structures
is demonstrated. In addition, we find good agreement with recent magneto-transport measurements for large
graphene rings and investigate their valley-dependent density of states.
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I. INTRODUCTION

Graphene is a two-dimensional material consisting of
carbon atoms in a honeycomb lattice, which has been the
subject of intense research for more than a decade in part due
to its remarkable electronic properties [1,2]. It is a semimetal
characterized by a linear band structure near the Fermi level.
The properties of graphene can be modified greatly by nanos-
tructuring, for instance, by making graphene nanoribbons
[3–5], graphene quantum dots [6,7], graphene nanorings
[8–10], or periodic perforations in the graphene sheet, known
as graphene antidot lattices (GALs) [11–14]. Experimentally,
these structures can be made with, e.g., e-beam lithography
with feature sizes down to a few nanometers [6,14–16].

Due to the linear dispersion, electrons in graphene behave
as massless Dirac fermions and are to a good approxima-
tion described by the Dirac equation [2]. In this approach,
confinement of electrons can be taken into account by
including a piecewise constant mass term [17]. This allows
for accurate modeling of the properties of nanostructured
graphene structures within the Dirac approximation [18,19].
The primary advantage of using the Dirac equation is that
atomistic details are ignored, making the method much faster
than atomistic methods such as tight binding and density
functional theory, in particular, for calculating the properties
of large structures. In addition, so-called “gapped graphene”
can be modeled by adding a homogeneous mass term equal
to half the band gap to the Dirac Hamiltonian [20,21]. A
homogeneous mass term therefore simplifies the problem
further by ignoring nanostructuring as well as atomistic details.
Hence, while this is accurate for the magneto-optical response
of homogeneous gapped graphene [20] it fails to describe, e.g.,
the Hofstadter energy spectrum of graphene antidot lattices in
a perpendicular magnetic field [21]. In the present work, a
spatially varying mass term is applied in order to accurately
describe nanostructuring.

Previous theoretical studies of nanostructured graphene in
magnetic fields based on the Dirac Hamiltonian have focused
on graphene antidots [22], graphene quantum dots [23–25],
infinitely thin graphene rings [26], or graphene rings in a
radially decaying magnetic field [27,28]. A realistic model
of a graphene ring, however, must account for structures
having quite dissimilar inner and outer radii, as well as the
presence of constant magnetic fields. Moreover, such a model

will contain the dot and antidot structures as special limiting
cases. Hence, in this study, we derive the eigenvalue condition
for a general graphene ring with any inner and outer radii
under a constant perpendicular magnetic field. In contrast
to tight-binding models, our results are fully analytical and
applicable to arbitrarily large structures. We also explicitly
take the limits of vanishing inner radius, giving rise to a
graphene quantum dot, and outer radius approaching infinity
giving rise to a graphene antidot. We show that these limits are
in agreement with previous models. Furthermore, the model
is compared with recent magneto-transport measurements on
large graphene rings reported in Ref. [10]. Good agreement
between theory and measurements is demonstrated for these
structures and, moreover, we highlight their potential for
valleytronics applications by studying the valley-resolved local
density of states in the experimental magnetic-field range.

II. THEORY AND METHODS

We consider a graphene ring with inner and outer radii
R1 and R2 subjected to a perpendicular magnetic field;
see Fig. 1. In this manner, dot and antidot geometries are
special cases of the ring; namely, R1 → 0 and R2 → ∞,
respectively. The Dirac model of graphene is employed by
taking the confinement into account via a piecewise constant
mass term �(r), which is vanishing in the graphene region
and equal to � elsewhere. Such a piecewise constant mass
term reproduces the features of nanostructures confined by
armchair edges, whereas edges with extended zigzag segments
are more problematic, partly due to the presence of edge
states [18,19,29]. The antidot [22] and dot [24,25] geometries
have already been considered within this model and many
steps of the current derivation are similar to those cases.
Also, infinitely thin rings were previously considered within
a similar model, showing very good agreement with tight-
binding simulations of thin graphene rings with armchair
edges [26]. Additionally, the ring geometry was considered
for a radially decaying magnetic field [27,28].

Here, the general problem of a graphene ring with arbitrary
inner and outer radii under a magnetic field will be consid-
ered. Experimentally, graphene nanostructures are typically
etched out of larger sheets by using lithography [6,14–16].
Such graphene nanostructures are characterized by strong
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FIG. 1. Graphene ring geometry with inner and outer radii R1

and R2 and a perpendicular magnetic field. This system is modeled
by using the Dirac equation with a spatially varying mass term, equal
to � in regions 1 and 3 and vanishing in region 2.

confinement consistent with � → ∞. Alternative methods,
such as hydrogenation [30] or embedding in various host
materials [31], have been considered, however. In these cases,
softer confinement with finite barriers can be mimicked by a
finite mass term. In the present work, our primary focus will
be on the � → ∞ limit but results valid for finite � are given
in the appendix.

We place the graphene sheet in the (x,y) plane and take the
magnetic field B along z. The Dirac equation reads H� = E�

with spinor wave function � = (ψA,ψB)T and Hamiltonian
near one of the two inequivalent Dirac valleys,

H =
[

�(r) vF �∓
vF �± −�(r)

]
, (1)

where the upper (lower) sign corresponds to the K (K ′) valley.
Here, vF ≈ 106 m/s is the Fermi velocity and �± ≡ �x ±
i�y , where � = p + eA is the generalized momentum and
A = (B/2)(−yx̂ + xŷ) is the vector potential in the Landau
gauge. For a region in which the mass term is constant, the
eigenvalue condition for the two spinor components ψA and
ψB can be decoupled, yielding

v2
F �∓�±ψA(r) = [E2 − �2(r)]ψA(r). (2)

The requirement that the mass term is constant implies
that this equation is valid only for r �= R1,2. The full so-
lution must therefore be obtained by enforcing continuity
of the wave function at the boundaries. This equation has
solutions on the form ψA(r,φ) = (2π )−1/2f (r)eimφ , where
m = 0, ± 1, ± 2, . . . is the angular-momentum quantum num-
ber. By introducing a dimensionless radial coordinate ρ =
r/

√
2lB with magnetic length lB = √

h̄/(eB) and dimension-
less energy ε = E/(h̄ωc) as well as δρ = �(r)/(h̄ωc) and
δ = �/(h̄ωc) with cyclotron energy h̄ωc = √

2h̄vF / lB , this

leads to the eigenvalue equation[
− d2

dρ2
− 1

ρ

d

dρ
+ m2

ρ2
+ ρ2

]
f (ρ) = 2λn,mf (ρ), (3)

with eigenvalue λn,m = 2(ε2 − δ2
ρ) − (m ± 1), where n is the

radial quantum number. As a matter of convention, we use
positive values n = 1,2, . . . for positive eigenvalue solutions
and negative n = −1, − 2, . . . for negative ones. It can be
shown that the energy spectra of the K and K ′ valleys
are connected through the simple operation E(K ′)

m = −E
(K)
m+1,

which was also noted for the antidot geometry in Ref. [22].
Note that this restores any broken electron-hole symmetry in
the individual valleys. Due to this simple connection between
the valleys, only one valley needs to be considered explicitly
in order to construct the full energy spectrum and most of the
following derivation is therefore based on the K valley.

Equation (3) has the general solution

f (ρ) = ρ−me− ρ2

2
[
αL−m

ε2−δ2
ρ−δK

(ρ2) + βU 1−m
δK+δ2

ρ−ε2 (ρ2)
]
, (4)

where Ub
a (z) ≡ U [a,b,z] is the confluent hypergeometric

function of the second kind, Lb
a(z) is the generalized Laguerre

polynomial, and we have defined δK = 1 in the K valley
and δK = 0 in the K ′ valley. Also, α and β are constants
that must be determined from the boundary conditions. We
focus on a graphene ring with inner radius R1 = √

2lBρ1 and
outer radius R2 = √

2lBρ2 and specialize later to the cases of
dots and antidots by taking the limits R1 → 0 and R2 → ∞,
respectively. To satisfy normalizability of the wave function,
β = 0 in region 1 and α = 0 in region 3. The general spinors
following from this procedure are given in the appendix, both
in the case of finite � and � → ∞.

The primary focus here is the δ → ∞ limit of Eq. (4)
because this corresponds physically to strongly confining
graphene rings such as structures etched lithographically from
a sheet. To this end, we apply excellent approximations of
both Lb

−a(z) and Ub
a (z) that exist in the limit of large a > 0;

namely [32],

Lb
−a(z) 
 ez/2+2

√−az(−a/z)b/2 cos(bπ )

2
√

π (−az)1/4
(5)

and [22,33]

Ub
a (z) 
 2ez/2

�(a)

( z

a

) 1−b
2

K1−b(2
√

az), (6)

where Kν(z) is the modified Bessel function of the second kind
and �(a) is the gamma function.

The eigenvalue condition is determined by requiring conti-
nuity of both spinor components at the R1 and R2 boundaries.
In the � → ∞ limit, with spinor components given by
Eqs. (A5) and (A6), the eigenvalue condition in the K valley
becomes

0 = {
U−m

−ε2

(
ρ2

2

)[
εL−m−1

ε2

(
ρ2

1

) − ρ1L
−m
ε2−1

(
ρ2

1

)] − εL−m−1
ε2

(
ρ2

2

)[
U−m

−ε2

(
ρ2

1

) + ρ1εU
1−m
1−ε2

(
ρ2

1

)]
+ ρ2εU

1−m
1−ε2

(
ρ2

2

)[
ρ1L

−m
ε2−1

(
ρ2

1

) − εL−m−1
ε2

(
ρ2

1

)] − ρ2L
−m
ε2−1

(
ρ2

2

)[
U−m

−ε2

(
ρ2

1

) + ρ1εU
1−m
1−ε2

(
ρ2

1

)]}
× [

ε2L−m−1
ε2

(
ρ2

1

)
U 1−m

1−ε2

(
ρ2

1

) + L−m
ε2−1

(
ρ2

1

)
U−m

−ε2

(
ρ2

1

)]−1
. (7)
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The corresponding eigenvalue condition in the case of finite
� is given in the appendix. Unless stated otherwise, eigenval-
ues are calculated by using the expressions for � → ∞.

It is interesting to note that the dimensionless lengths ρ1 and
ρ2 are invariant to scaling simultaneously all physical lengths
R1 and R2 by a factor a and the magnetic field B by 1/a2. It
then follows immediately from Eq. (7) that the dimensionless
energy ε therefore also must be invariant under this scaling
and so the physical energy scales as E → E/a. Therefore, by
appropriately scaling the eigenvalues for a given geometry, the
eigenvalues for any other system with the same R1/R2 ratio
can be obtained. This scaling, of course, only applies whenever
R1/R2 is finite and breaks down in the limits R1 → 0 and
R2 → ∞, but is valid otherwise.

For the dot geometry, i.e., the R1 → 0 limit, the eigenvalue
condition, Eq. (7), reduces to

εL−m−1
ε2

(
ρ2

1

) + ρ1L
−m
ε2−1

(
ρ2

1

) = 0. (8)

This expression is equivalent to the one obtained in Ref. [25]
and, thus, gives rise to exactly the same eigenvalue spectrum.
Also, an expression similar to this was derived in Ref. [24], but
apparently their approximate expression erroneously gives the
Landau levels of pristine graphene in addition to the correct
spectrum (see discussion below).

Similarly, for the antidot geometry, i.e., the R2 → ∞ limit,
the eigenvalue condition reduces to

U−m
−ε2

(
ρ2

2

) + ρ2εU
1−m
1−ε2

(
ρ2

2

) = 0, (9)

which is the same expression as derived in Ref. [22]. The fact
that the ring eigenvalue condition, Eq. (7), readily reduces
to the well-known expressions for dot and antidot geome-
tries testifies to the correctness of the obtained expression.
Note that these eigenvalue expressions can also be derived
by using an equivalent boundary condition requiring zero
outward particle current on the boundary, as discussed in the
appendix.

As discussed above, the Dirac approach is an approximation
to more accurate but computationally demanding atomistic
methods. Hence, in order to validate the current Dirac model,
we compare below to tight-binding simulations for structures
sufficiently small to allow an atomistic approach. For this
purpose, we use a nearest-neighbor tight-binding model with
the Hamiltonian

Ĥ = −t
∑
〈i,j〉

ĉ
†
i ĉj , (10)

where ĉ
†
i and ĉj are creation and annihilation operators,

respectively, t = 3.033 eV is the hopping parameter, and 〈i,j 〉
denotes nearest neighbors. In this case, the magnetic field is
incorporated via a Peierls substitution [20,21] t → t exp(iφij )
with the Peierls phase φij = e/h̄

∫ rj

ri
A · dl for a pair (i,j ) of

atoms.

III. RESULTS

The eigenvalue spectra of graphene rings, dots, and antidots
for several values of n and m are shown in Fig. 2 for
both K and K ′ valleys. Despite the geometric differences
between these three systems, some similarities are observed:
The magnetic-field dependence of ring and the antidot spectra
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FIG. 2. Eigenvalue spectra of ring, dot, and antidot systems with
inner and outer radii R1 = 10 nm and R2 = 20 nm in the K (left) and
K ′ (right) valleys for −4 � n � 4 and −10 � m � 10. The dashed
black lines show the Landau levels (|n| � 4) of pristine graphene.

are both approximately linear at large field strength, while
the ring and dot spectra are nearly linear at low magnetic
fields. These similarities will be discussed in more detail
below.

One feature that is immediately evident is that the magnetic
field lifts the valley (or pseudospin) degeneracy for all three
geometries. This is especially pronounced in the ring system
due to the presence of a band gap that persists even for large
values of the magnetic field. The lifting of valley degeneracy
in graphene systems in magnetic fields is well known and has,
for instance, been reported for graphene quantum dots [25]
and graphene rings in a radially decaying magnetic field [27].
This lifting of valley degeneracy could make nanostructured
graphene, especially graphene rings, suitable candidates for
valleytronics applications.

To illustrate the asymptotic behavior under large mag-
netic fields, the Landau levels of pristine graphene, En =
sgn(n)vF

√
2eh̄B|n| are included in Fig. 2 for both dot and

antidot spectra. The confinement by the outer boundary is
lifted when ρ2 = R2/

√
2lB → ∞, i.e., either the magnetic

field or the outer radius tends to infinity. In this limit, the
Landau levels of pristine graphene should be recovered for
the dot geometry. Indeed, it is seen that the energy spectra
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of the dot converge to the pristine graphene spectrum at
large magnetic fields. The convergence towards the Landau
levels of pristine graphene for large magnetic fields was also
noted in Ref. [24]. Similarly, the confinement by the inner
boundary is lifted when ρ1 = R1/

√
2lB → 0, i.e., either the

inner radius or the magnetic field tends to zero. In this limit,
the Landau levels of pristine graphene should be recovered
for the antidot geometry. At low magnetic fields, the antidot
energy spectra, indeed, contain several degenerate eigenvalues,
which coincide with the Landau levels of pristine graphene.
In fact, as m is increased and the wave function pushed away
from the antidot, the Landau levels of pristine graphene are
always recovered, plus additional states for lower values of m

corresponding to states localized near the antidot. In the ring
system, confinement by either the inner or outer boundary is
felt in both of these limits and, therefore, the spectrum never
fully converges to that of pristine graphene.

The band gap of the dot system closes rather fast with
increasing magnetic field to reveal the equivalent of the zeroth
Landau level, the LL0 state, of pristine graphene. At large
magnetic fields, this state is degenerate for all values of m. The
antidot system also has states resembling the LL0 state, but
these are only fully degenerate in m at vanishing magnetic field.
The band gap of the ring system remains at these magnetic
fields, at least for the shown values of m. This is primarily
due to the additional confinement compared with both dot and
antidot systems.

It was noted in Ref. [26] that states having positive energy
that decreases with magnetic field are associated with clock-
wise bond currents in the ring. Similarly, negative energies
increasing with field correspond to counterclockwise currents.
This means that the magnetic field will tend to localize these
currents on the inner and outer boundary for these two types
of states, respectively, due to the Lorentz force [34]. This also
immediately explains why the dot spectrum is dominated by
energies with negative slope and why the antidot spectrum is
dominated by energies with positive slope. Moreover, it lies
behind the transition from negative to positive slope in the ring
spectrum, as the magnetic field begins to localize electrons on
the inner boundary.

The magnetic-field dependence of the eigenvalue spectra
for ring, dot, and antidot geometries having inner and outer
radii R1 = 10 nm and R2 = 20 nm, respectively, is compared
in Fig. 3 for different values of m. A striking feature of this
plot is that the energy spectra of the ring seem to “interpolate”
between the dot and antidot cases. Hence, in low magnetic
fields, the ring and dot energies are similar; in particular, for
large |m|. Similarly, for large B the ring and antidot spectra
agree. A qualitative understanding of these observations can be
gained from inspection of the associated wave functions, which
we display in Fig. 4 for representative magnetic fields. Hence,
with increasing magnetic field, the wave function is increas-
ingly confined to smaller radii, as seen in Fig. 4. Therefore, the
wave function of the ring system is only weakly influenced by
the outer boundary and the eigenvalues become similar to the
eigenvalues of the corresponding antidot system. On the other
hand, when the magnitude of the angular-momentum quantum
number m is increased, the wave function is pushed outwards
by the centrifugal effect as seen in Fig. 4 for B = 10 T and
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FIG. 3. First positive eigenvalue in the K valley as a function of
magnetic field for ring, dot, and antidot geometries with inner and
outer radii R1 = 10 nm and R2 = 20 nm for different values of m.

m = 4 or m = −9. Thus, as long as the magnetic field is not
too large, the wave function will be only weakly influenced
by the inner boundary. In this limit, the eigenvalues of the
ring system will therefore be similar to the eigenvalues of the
dot system. Consequently, the ring wave function is primarily
confined by the inner boundary for large magnetic fields and
by the outer boundary for large m. Due to this relationship, the
eigenvalues of the ring system are approximately ε

(ring)
n,m (B) ≈

max (ε(dot)
n,m (B),ε(ad)

n,m(B)), where ε(dot)
n,m (B) and ε(ad)

n,m(B) are the
eigenvalues of the dot and antidot systems, respectively. Note,
that it is apparent from the wave functions that the f and
g spinor components are equal on the R2 boundary for the
ring and disk systems; see Fig. 4. Also, the f and g spinor
component are equal but for a sign on the R1 boundary. This
is consistent with the boundary condition of no net outward
particle current on the boundary as discussed in the appendix.

The similarity between the ring and dot states can be quanti-
fied by calculating the overlap integral between the ring and dot
wave functions, given by S

(n,m)
ring,dot = ∫

(�(n,m)
ring )∗�(n,m)

dot d2r =∫
(f (n,m)

ring f
(n,m)
dot + g(n,m)

ring g
(n,m)
dot )rdr . The overlap integral be-

tween the ring and antidot wave functions is calculated in
the same way. The overlap integral is plotted as a function of
magnetic field in Fig. 5 for different values of m. The figure
shows that the overlap between the ring and antidot wave
functions is essentially zero at vanishing magnetic field and
converges towards unity for large magnetic fields. It is seen that
the convergence is faster for numerically small values of the
angular-momentum quantum number m. The reason for this
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FIG. 4. Eigenstate spinors of ring, dot, and antidot systems at
different values of B and m in the K valley. The solid and dashed
lines are the f and g spinor components, respectively.

is that, as m increases, the wave function is pushed outward
as discussed above, which increases the influence of the outer
boundary. For the same reason, the overlap integral between
the ring and dot wave functions is converging towards unity for
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FIG. 5. Calculated overlap between the ring wave function and
either the antidot (left) or dot (right) wave function as a function of
magnetic field for the eigenstates of the first positive eigenvalue at
different values of m in the K valley. Solid (dashed) lines are for
m � 0 (m < 0).
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FIG. 6. Comparison between eigenvalue spectra calculated with
the current Dirac model and tight-binding for ring and dot geometries.
The tight-binding geometries are chosen as hexagonal with armchair
edges having side lengths of the inner and outer boundaries 5

√
3a

and 10
√

3a, respectively, where a = 0.246 nm is the graphene lattice
constant. The radii used in the Dirac model were chosen to fit the
tight-binding geometry. The geometries used in tight-binding (black)
and Dirac (red) models are shown in the insets.

numerically large values of m, while it is converging towards
zero for large magnetic fields.

To validate the current model, it is compared with nearest-
neighbor tight-binding simulations for similar geometries in
Fig. 6 for the dot and ring. The antidot geometry is not included
here, because it is not straightforward to model in tight binding,
as it would essentially require an infinite number of atoms.
The geometries in tight binding are chosen as hexagonal
with armchair edge chirality in order to avoid edge states,
which occur for extended zigzag edges [18,19,35] and which
are absent in Dirac-equation-based models [18,19]. The radii
used in the Dirac model were chosen to fit the tight-binding
geometries, as shown in the insets of Fig. 6. The spectra show
very good agreement between Dirac and tight-binding models,
especially for the states closest to the Dirac point. It is not
surprising that the agreement is best for these states because
the Dirac model is based on a linearization of the tight-binding
band structure near one of the Dirac points. In addition,
excellent agreement is observed for the lowest states in high
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magnetic fields. This follows from the fact that, in sufficiently
high fields, the magnetic length becomes smaller than the
characteristic dimension of the nanostructure. Hence, the
emerging bulk-like Landau levels are less affected by the edges
and very well described by the Dirac model. For instance, the
magnetic length becomes less than the outer side length in
Fig. 6 already at B ≈ 35 T. We have compared the spectra for
relatively small geometries due to the numerical complexity
of the tight-binding calculations. However, it is worth noting
that all energies approach the Dirac point when the size of
the geometry increases, which should increase the agreement
between tight binding and the Dirac model. In the tight-binding
spectrum, some of the energy crossings observed in the Dirac
spectrum are avoided. Clearly, perfect circular symmetry is
broken in the atomistic model as a consequence of the hexago-
nal shape of the ring or dot and, also, at the level of the graphene
lattice itself. This effectively leads to coupling between states,
which is observed in the spectra as avoided crossings.

We noted above that an eigenvalue condition similar to
ours for the dot geometry was derived in Ref. [24], leading
to the same spectrum as our model but, additionally, giving
the Landau levels of pristine graphene. We can substantiate
our claim that these additional states should not be present
by observing that these states are not present in the tight-
binding model. Additionally, the pristine Landau levels are
absent in other models of graphene quantum dots found in the
literature [23,25]. Note also that, unlike the result obtained in
Ref. [26], the result obtained here for the ring geometry does
not require the ring to be particularly thin in order to give good
agreement with tight binding.

To investigate the effects of softer confinement, we compare
the infinite and finite � cases by using Eq. (A4) for varying
� in Fig. 7. The figure shows that all eigenvalues converge to
the � → ∞ limit as the mass term is increased. In the limit
of vanishing �, confinement of the electrons is absent and
the eigenvalues converge to the pristine Landau levels, with
Landau level index n = (m + |m|)/2 + δK , which also means
that all eigenvalues are degenerate for m � 0. As the figure
shows, the positive-m states shift towards the � → ∞ limit
and the degenerate m � 0 states split when � is close to the
energy E. This is the expected result, because the confining
potential should be larger than the energy of the state in order
to confine the electron. The transition is gradual for small
magnetic fields and more abrupt for large fields. The transition
range may be seen as a competition between the geometric
confinement � and the characteristic magnetic energy, i.e.,
the cyclotron energy h̄ωc. For B = 10 and B = 100 T fields,
h̄ωc is approximately 114 and 362 meV, respectively. Corre-
spondingly, the mass term must be significantly larger in the
B = 100 T case to have any noticeable influence on the states.

The theoretical framework presented here is readily appli-
cable to structures of experimental relevance. Because of the
Dirac approximation, even very large nanostructures can be
treated, in contrast to atomistic approaches. A case in point is
the very recent magneto-transport measurements of Ref. [10].
There, graphene rings having inner and outer radii 200 nm and
∼400 nm, respectively, were studied in a geometry allowing
for carrier doping via electrostatic gating. For slightly p-doped
structures, pronounced Aharonov–Bohm-type (AB-type) os-
cillations were observed above a certain threshold value of the
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FIG. 7. First positive eigenvalue in the K valley as a function
of the mass term for a graphene ring with inner and outer radii
R1 = 10 nm and R2 = 20 nm for different values of m, calculated
by using Eq. (A4). The dashed lines show the corresponding values
obtained for an infinite mass term calculated by using Eq. (7).

magnetic field of about 0.1 T. In Fig. 8, we plot the energies
of a graphene ring taking R1 = 200 nm and R2 = 350 nm. We
plot only the negative eigenvalues corresponding to a p-doped
sample but, naturally, the positive ones lie symmetrically above
zero. The observation of a threshold magnetic field may be
interpreted as follows: As illustrated in Fig. 8, the confinement-
induced band gap is predicted to decrease in a magnetic field.
Hence, in cases of dilute doping, the Fermi level may lie in the
gap at low fields. Upon increasing the field, the Fermi level
will cross the band edge, however, and this will coincide with
the onset of AB oscillations. For a threshold magnetic field of
0.1 T, this line of reasoning fixes the Fermi level at approxi-
mately −4 meV as indicated by the dashed line in Fig. 8.

We may now read off the magnetic fields, at which the
Fermi level coincides with one of the calculated eigenvalues.
In this manner, the intersections illustrated by the vertical lines
in Fig. 8 are extracted. These intersections are seen to follow
a quasiperiodic pattern as expected for AB oscillations. The
period of about 0.012 T corresponds reasonably well with the
measured AB resonances indicated by crosses in the figure.
The discrepancy between calculated and measured magnetic
fields �B is shown in the inset and seen to be in the few-
mT range. Thus, the theory is in good agreement with these
measurements. We note, however, that the outer radius has
been taken to be slightly less than the experimental estimate.
In fact, if an outer radius of 400 nm is used, we find energy
eigenvalues lying somewhat closer than the measured ones.
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FIG. 8. Energy eigenvalues of a graphene ring with R1 = 200 nm
and R2 = 350 nm with contributions from the K (blue) and K ′ valleys
(red). The dashed line indicates the Fermi level determined from
the band edge at B ∼ 0.1 T. The vertical lines show the magnetic-
field values, at which eigenvalues coincide with the Fermi level.
Crosses are experimental Aharonov–Bohm resonances from Ref. [10]
and the deviation between calculation and experiment �B is shown
in the inset. The dotted lines define the energy range used to compute
the local density of states in Fig. 9.

Whether the outer radius used in the experiment is, in fact,
closer to 350 nm is unclear. It is gratifying, however, that the
overall experimental features are reproduced by theory. We
further note that this structure contains more that eight million
atoms and would, therefore, be very difficult to handle with
atomistic approaches.

To further stress the applicability of the analytical Dirac
approach, we now consider the valley-resolved local density
of states (LDOS) for the large ring studied in Fig. 8. The
LDOS is probed in transport experiments such as tunneling
spectroscopy. In practice, measurements probe a finite en-
ergy range determined by the experimental resolution and,
consequently, we consider the LDOS sampled over a finite
energy range. To this end, we select the range between
E1 = −12 meV and E2 = −10 meV indicated by the dotted
lines in Fig. 8 and fix the magnetic field at B = 0.1 and
0.15 T. This energy range is selected because the balance
between K and K ′ contributions varies significantly in the
experimental magnetic field range; c.f. Fig. 8. The LDOS is
then calculated as L(r) = ∑

E∈[E1,E2] |ψE(r)|2 with ψE being
a state having energy E. As clearly demonstrated in Fig. 8,
this energy range contains contributions from both the K

(blue) and K ′ (red) valleys. We compute the LDOS for each
valley separately in order to distinguish between the two valley
contributions. The results, shown in Fig. 9(a), illustrate this
difference very clearly. Thus, the LDOS of the K valley is only
about half of the K ′ LDOS at B = 0.1 T. In contrast, the two
contributions are roughly equal at B = 0.15 T. In both cases,
the LDOS tends to decrease with radial distance and with a
slight oscillatory modulation superimposed on the decrease.
The difference between valley contributions follows from the
number of states in the energy range considered, as shown in

FIG. 9. (a) Valley-resolved local density of states (arbitrary units)
for a graphene ring with R1 = 200 nm and R2 = 350 nm. States are
sampled in the energy range between −12 and −10 meV indicated by
the dotted lines in Fig. 8. The two columns correspond to magnetic
fields of 0.1 and 0.15 T, respectively. (b) Valley-resolved number of
states in the same energy range.

Fig. 9(b). Thus, at B = 0.1 T there are five and two states
in the K and K ′ valley, respectively, whereas at B = 0.15 T
both valleys contain precisely two states. Furthermore, above
B ≈ 0.155 T, no states with energy between E1 and E2 are
found in the K ′ valley, leading to complete valley polarization.
The pronounced difference between valleys at certain B fields
could potentially be beneficial for applications in valleytronics.
We note, however, that complete decoupling of valleys is
an idealization resulting from the simple model. In reality,
any disorder at the edges or elsewhere will introduce valley
mixing. A sufficiently strong magnetic field might suppress
valley mixing due to the outer edge by focusing the relevant
states in the inner portion of the ring, as shown in Fig. 4.

IV. SUMMARY

In summary, graphene nanorings in magnetic fields have
been considered. By applying the Dirac approximation, an
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explicit eigenvalue condition valid for arbitrary field strength,
geometry, and confining mass term has been derived. The
special cases of vanishing inner and outer barriers de-
scribe graphene dots and antidots, respectively, and have
been investigated separately. The Dirac approach has been
validated by comparison with atomistic simulations. More-
over, we have compared the results of the Dirac ap-
proach to recent magneto-transport measurements for rel-
atively large graphene rings. The calculated position of
Aharonov–Bohm resonances is found to agree well with
such experiments. By studying the valley-resolved LDOS
we highlight the valleytronics potential of these structures.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support
from the Center for Nanostructured Graphene (Project No.
DNRF103) financed by the Danish National Research Foun-
dation and from the QUSCOPE project financed by the Villum
Foundation.

APPENDIX: GENERAL EIGENSTATES AND
EIGENVALUE CONDITION

The full f spinor component for the ring system is
determined by Eq. (4), with β = 0 in region 1 and α = 0
in region 2, giving

f (r) = Ne−ρ2/2ρ−m

⎧⎪⎨
⎪⎩

L−m
ε2−δ2−δK

(ρ2), ρ < ρ1

αL−m
ε2−δK

(ρ2) + βU 1−m
δK−ε2 (ρ2), ρ ∈ [ρ1,ρ2]

γU 1−m
δK+δ2−ε2 (ρ2), ρ > ρ2,

(A1)

where N , α, β, and γ are constants. The constants α, β, and γ are determined by requiring continuity of the wave-function spinors
on the boundaries between the different regions and N is determined by the normalization condition

∫
(|ψA|2 + |ψB |2)d2r = 1.

By using Eq. (1), the second spinor component can be expressed as ψB = vF �±ψA/[E + �(ρ)]. This component thus has the
form ψB = i(2π )−1/2g(ρ)ei(m+1)φ with radial part

g(ρ) = 1

2(ε + δρ)

(
− d

dρ
± m

ρ
± ρ

)
f (ρ). (A2)

For the K valley, continuity of f and g then yields the condition

g(K)(ρ) = Ne−ρ2/2ρ−m−1

⎧⎨
⎩

(δ − ε)L−1−m
ε2−δ2 (ρ2), ρ < ρ1

−εαL−m
ε2 (ρ2) + β

ε
U−m

−ε2 (ρ2), ρ ∈ [ρ1,ρ2]
γU−m

δ2−ε2 (ρ2)/(δ + ε), ρ > ρ2.

(A3)

The eigenvalue condition for a finite � is determined by requiring continuity of both wave-function spinor components,
Eqs. (A1) and (A3), at both the R1 and R2 boundaries, which yields

0 =
{
εU 1−m

1−ε2

(
ρ2

2

)[
εL−m−1

ε2

(
ρ2

1

)
L−m

ε2−δ2−1

(
ρ2

1

) + (δ − ε)L−m
ε2−1

(
ρ2

1

)
L−m−1

ε2−δ2

(
ρ2

1

)]
U−m

δ2−ε2

(
ρ2

2

)
− (δ + ε)U−m

−ε2

(
ρ2

2

)[
εL−m−1

ε2

(
ρ2

1

)
L−m

ε2−δ2−1

(
ρ2

1

) + (δ − ε)L−m
ε2−1

(
ρ2

1

)
L−m−1

ε2−δ2

(
ρ2

1

)]
U 1−m

δ2−ε2+1

(
ρ2

2

)
− [

ε(δ − ε)U 1−m
1−ε2

(
ρ2

1

)
L−m−1

ε2−δ2

(
ρ2

1

) − U−m
−ε2

(
ρ2

1

)
L−m

ε2−δ2−1

(
ρ2

1

)]
× [

L−m
ε2−1

(
ρ2

2

)
U−m

δ2−ε2

(
ρ2

2

) + ε(δ + ε)L−m−1
ε2

(
ρ2

2

)
U 1−m

δ2−ε2+1

(
ρ2

2

)]}

× {[
ε2L−m−1

ε2

(
ρ2

1

)
U 1−m

1−ε2

(
ρ2

1

) + L−m
ε2−1

(
ρ2

1

)
U−m

−ε2

(
ρ2

1

)]
U−m

δ2−ε2

(
ρ2

2

)}−1
. (A4)

The spinor components in the special case of the infinite-mass term are obtained from Eq. (4) by using the approximations (5)
and (6) in regions 1 and 3 and expanding prefactors around δ → ∞, keeping dominant terms, which for the f spinor in the K

valley gives

f (K)(ρ) 
 Ne−ρ2/2ρ−m

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e
1
2 ρ(4δ+ρ)

δ−m(−ρ)m

2
√

π
√

δρ
, ρ < ρ1

αU 1−m
1−ε2 (ρ2) + βL−m

ε2−1(ρ2), ρ ∈ [ρ1,ρ2]

γ
√

πe
1
2 ρ(ρ−4δ)(δρ)m− 1

2

�(δ2) , ρ > ρ2.

(A5)

The second spinor component is determined by Eq. (A2), which in the K valley yields

g(K)(ρ) 
 Ne−ρ2/2ρ−1−m

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− ρe
1
2 ρ(4δ+ρ)

δ−m(−ρ)m

2
√

π
√

δρ
, ρ < ρ1

−εαL−m−1
ε2 (ρ2) + β

ε
U−m

−ε2 (ρ2), ρ ∈ [ρ1,ρ2]

γ
√

πρe
1
2 ρ(ρ−4δ)(δρ)m− 1

2

�(δ2) , ρ > ρ2.

(A6)
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For an infinite-mass term, an equivalent boundary condition
is requiring zero outward particle current on the boundaries of
the ring. This leads to the condition [36] ψA = −ie−iθψB ,
where θ is the angle of the normal vector pointing away
from the boundary with θ = φ on the outer boundary and
θ = φ + π on the inner boundary. This is equivalent to
f (R1) = −g(R1) and f (R2) = g(R2). It is worth noting that
applying this boundary condition gives rise to the same
eigenvalue condition as taking the limit of � → ∞, as given

by Eq. (7). In fact, the spinors, Eqs. (A5) and (A6), show
directly that f/g = −1 for all ρ < ρ1 and f/g = 1 for
all ρ > ρ2, thus proving that the boundary conditions are
compatible. The advantage of using � in the derivation is
that it becomes straightforward to include the case of a finite
�, which could be useful for systems with soft confinement.
It also allows us to verify that the � → ∞ limit is well
defined by comparing it to calculations with varying values
of �.
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[25] M. Grujić, M. Zarenia, A. Chaves, M. Tadić, G. A. Farias, and
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