PHYSICAL REVIEW B 94, 125424 (2016)

Exciton Stark shift and electroabsorption in monolayer transition-metal dichalcogenides
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Excitons in transition-metal dichalcogenides can be dynamically manipulated using electrostatic fields.
Analyzing both in-plane and out-of-plane fields, I compute the exciton Stark shift and electroabsorption spectrum
of monolayer MoS,;,MoSe,;,WS,, and WSe,. The effect of in-plane fields is found to greatly surpass that of
out-of-plane fields. In particular, if exciton binding is reduced through screening by surrounding dielectrics, such
as in MoS, encapsulated by hexagonal boron-nitride, the in-plane exciton polarizability exceeds the measured
out-of-plane value by nearly two orders of magnitude. Accordingly, pronounced electroabsorption features are

expected for fields as low as 10 V um™".
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I. INTRODUCTION

The interest in transition-metal dichalcogenides (TMDs)
has recently increased dramatically. These materials have
intriguing electronic and optical properties and serve as
versatile building blocks in van der Waals stacked devices
[1-2]. The linear and nonlinear optical properties of semicon-
ducting TMDs are dominated by excitons [1-6]. In monolayer
structures with little substrate screening, the exciton binding
energy is as large as 0.5 eV [3-6]. Hence, such electron-hole
pairs are stable against thermal dissociation. This has sig-
nificant implications for optoelectronic devices, and excitons
play a crucial role in TMD photodetectors [7,8] and light
emitting diodes [9]. The properties of excitons in TMDs can
be controlled by structural manipulation as well as gating.
Hence, increased screening in multilayer structures due to
ambient dielectrics will reduce exciton binding. It is highly
desirable, however, to find means of manipulating excitons
that can be switched on and off at will. Such dynamical control
is possible using external gating via applied electric fields.
Hence, in several recent works, tunability through gating was
demonstrated for exciton photoluminescence, electrolumines-
cence, and second harmonic generation [9—14]. The dominant
mechanism in many cases is electrically controlled doping that
affects screening and changes the balance between neutral and
charged excitons (trions) [10,13,14].

Very recently, a purely electrostatic Stark shift of the
exciton emission was observed [15], thus demonstrating
that tuning of the emission without doping is possible.
This demonstration was achieved in vertically biased MoS;
few-layer samples. Hence, detection of the Stark shift
was made possible by the very large fields (of order
100 V um™") that can be applied perpendicularly to such
very thin samples. The measured out-of-plane polarizability
was found to be B, = 1a; ~0.58 x 107 DmV~' =12 x
1071 eV(m/V)?. Hence, a field of £ = 100 V um~! produces
a noticeable Stark shift of —%a 1E% ~ —1.2 meV. (Note that
the standard notation is followed and that o rather than B is
defined as the polarizability below. The two definitions are
related by 8 = %a.) It is clear, however, that much greater
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Stark shifts are, in principle, possible using in-plane electric
fields, as the in-plane exciton polarizability is much greater
than the out-of-plane value. In practice, exploiting in-plane
Stark shifts could obviously be challenging because of the need
for electrodes closely spaced laterally. Provided such practical
difficulties can be overcome, however, the large polarizability
could pave the way for greater tunablity with smaller applied
fields. Recently, optical Stark shifts in TMDs due to in-plane
polarized electromagnetic fields have been observed [16,17].

In the present paper, in-plane fields are primarily consid-
ered, and the exciton Stark shift and electroabsorption of sev-
eral important TMDs—MoS,,MoSe;,WS,, and WSe,—are
studied. Very large Stark shifts and pronounced electroabsorp-
tion features are predicted. Thus, for MoS, encapsulated by
hexagonal boron-nitride (hBN), an in-plane polarizability that
is nearly two orders of magnitude larger than the experimental
out-of-plane value and six orders of magnitude larger than
that of an unscreened two-dimensional (2D) hydrogen atom
is found. Hence, electric fields of the order 10 V um™' are
expected to lead to substantial Stark shifts. The 2D Wannier
model [18,19], including a strong in-plane electrostatic field
similar to recent studies of Stark shifts in phosphorene [20] and
exciton ionization in TMDs [21,22], is applied. In this manner,
general results for the screening-dependent polarizability are
found. In addition, the electroabsorption spectrum of important
TMDs is computed, and significant spectral changes for fields
around 10 Vum~' are predicted. Finally, the differences
between in-plane and out-of-plane fields are analyzed by
constructing a simple quantum well model of the out-of-plane
case.

II. EXCITON STARK SHIFT

The TMD excitons are modeled as electron-hole pairs
whose interaction is screened by the TMD sheet itself as
well as surrounding dielectrics. In the two-band, effective
mass approximation, such excitons are described by the 2D
Wannier equation [18,19]. This equation resembles that of a
2D hydrogen atom except that in-plane (||) effective masses
m, and my enter the kinetic energy of electrons and
holes, respectively. Moreover, screening modifies the Coulomb
interaction. Atomic units (a.u.) are used measuring distances
in atomic Bohr radii ap and energies in atomic Hartrees Ha
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FIG. 1. Energy of the exciton ground state using numerical
diagonalization and a variational approach. The inset illustrates the
geometry of the TMD sample.

and an in-plane electrostatic field & is included. In terms of the
relative coordinate 7 = 7, — 7, of the electron-hole pair, the
Wannier equation reads

{—ivz —wi@) +&- ?}w(?) = Ey(F). (1
Here, u = m, ymy,/(m.,) + my,) is the reduced in-plane
exciton mass in units of the free-electron mass. The potential
w is the screened Coulomb attraction. In truly 2D semicon-
ductors, such as monolayer TMDs, screening is nonlocal, i.e.,
it displays a pronounced g dependence in momentum space
[23,24]. To capture this effect, the dielectric constant £(g) can
be approximated by the linearized function &(g) ~ k + roq.
Here, « = (k, + kp)/2 is the average of the dielectric constants
of the surrounding materials above and beneath the sheet, as
illustrated in the inset of Fig. 1. In addition, ry is the screening
length proportional to the sheet polarizability [24]. In real
space, this interaction is given by the Keldysh [23] form

w(r) = >—|Ho| — | —Yo| — ) | (2)
27‘0 ro ro

Here, Hy is the zeroth order Struve function, and Y
is the zeroth order Bessel function of the second kind,
respectively. This potential has an unscreened r~! behavior
at large distances but diverges only logarithmically at small
distances due to screening.

In the presence of an in-plane electrostatic field, the
excitonic states become unstable, and the eigenvalue E attains
a nonvanishing imaginary part corresponding to the ionization
rate [21,22,25]. The real part of E is shifted by the field, and
the lowest order becomes E ~ Ej — %aé‘z, where E is the
unperturbed energy and « is the exciton polarizability. The
Wannier problem contains three material parameters, u, «,
and ry, upon which the energy will depend. However, a simple
scaling analysis readily shows that

m i
EO(MvarO) = EEO(I»]J’O%

K4
(X(/J/,K,r()) = Ea(1917f0)5

3
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where 7y = (u/ kg is the effective screening length. Hence,
only the dependence on 7 is nontrivial. In the following, the
analysis is therefore restricted to the simplified problem,

{_lvz _ l[HO(i) - YO(L>:| +E- ?}W) = Ey (),
2 2]"0 ro ro
)

where i = « = 1 and the scaling relations [Eq. (3)] are used
to generalize to arbitrary situations. Note that ury is in the
range 10-30 a.u. for typical TMDs [4].

The perturbative regime, in which the energy depends
quadratically on the field and exciton ionization is negligible,
is restricted to low field strengths. In atomic problems,
the critical field strength is given by 1 a.uu., ie., & =
Ha/eap = 5.14 x 10" Vm~!. As an estimate for solid-state
problems, the effective Hartree Ha* = Ha x u //c2 and Bohr
radius aj = ap x k/p can be assumed, and a critical field
of & = &y x u?/k3 can then be found. Adopting u =~ 0.2
and « ~ 5 as typical parameters for in-plane fields, it follows
that the perturbative regime is restricted to fields well below
&~ 165V um~!. This is in agreement with Ref. [21], for
which a marked deviation from the quadratic field dependence
is noted around this field strength for MoS, encapsulated in
hBN sheets.

The unperturbed problem, i.e., Eq. (4) with £ =0, has
cylindrical symmetry, and the ground state is of the purely
radial form v(r). In the presence of the field, polar coordinates
are applied, such that E.7=Ercosh. It is then easily
demonstrated that the exact first order correction to the
wave function is of the form (r)cos 6 with, additionally,
¥1(0) = 0. The Wannier problem [Eq. (4)] for the ground state
exciton is solved by using two approaches: (1) diagonalization
in a Gaussian basis and (2) variational optimization. As shown
below, these approaches yield excellent agreement for both
energy and polarizability. In the calculation of the unperturbed
ground state, the Gaussian basis contains 15 members of
the form exp(—pg;r?) with g; = 1073 x 3/, i =0...14. To
additionally include the first order correction (r)cos6,
functions of the form rcos@exp(—ﬂirz) with the same set
of exponents are added.

The exciton polarizability can be obtained in several distinct
ways. By ensuring that these agree, the reliability of the results
can be assured. The conceptually simplest approach is to
diagonalize the Wannier problem, including the electrostatic
field. This finite-field approach is well known from atomic
and molecular polarizability calculations [26] and has been
applied to phosphorene [20] and MoS; [21]. The danger of the
finite-field approach is that the applied field strength must be
sufficiently high that numerical errors are suppressed. This,
however, means that care must be taken that higher-order
contributions to the energy are negligible. In practice, a field
of £ = 10~* a.u. is found to be appropriate.

As an alternative to the finite-field approach, the starting
point for the variational approach is finding an accurate ansatz
for the unperturbed ground state. Subsequently, this zeroth
order solution can be used to find an accurate first order
correction to the wave function. In the Dalgarno-Lewis [27]
method, this yields the exact polarizability provided that the
exact unperturbed state is used as input. It is important to
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note that only the first order correction to the wave function is
needed to find the second order correction to the energy [27].
Alternatively, the first order wave function can be formulated in
a variational form itself. Below, both approaches are followed
and shown to agree rather well with each other as well as the
finite-field approach. A flexible bi-exponential form is used as
a variational ansatz for the unperturbed ground state,

Yo(r) = N{e™" —be 7"}, &)

where N is a normalization constant, whereas a, b, and y are
variationally optimized. The comparison in Fig. 1 shows that
this ansatz is able to reproduce the exact solution to a very high
degree of accuracy over the entire range of screening lengths.
Moreover, the values in Fig. 1 agree with those of Ref. [28] to
within four digits.

Writing 1 (r) = —2& ¥o(r) f(r), the exact wave function
to first order in the electric field can be written in the form

Y (F) = Yo(r)[1 — 2€ f(r) cos 0]. (6)

The factor 2€ is pulled out to simplify notation below.
Provided v is the exact zero order solution, the expression
[Eq. (6)] leads to the second order energy

Ey = EXWollf P + Lf(r)/r]F = 2rf(N)IYo),  (7)

with primes indicating radial derivatives. Note that this result
is based on a vanishing first order correction to the energy
as ensured by the cylindrical symmetry of the unperturbed
problem. Next, two approaches can be followed: In the
Dalgarno-Lewis [27] approach, functional minimization is
applied to Eq. (7). In this manner, the optimal f obeys

1) - (2@ + l)f/(r) L —r=0. ®
Yo T r

Alternatively, a trial form may be used and optimized in
Eq. (7). To this end, the form f(r) = pr(1 +gqr) with p
and ¢ variational parameters has been adopted. It should
be emphasized that both Eqgs. (7) and (8) assume v to be
the exact unperturbed ground state. Since no exact analytical
solution is known, the ground state obtained from numerical
diagonalization or the variational ansatz [Eq. (5)] is used for
approximation.

Figure 2 compares the computed exciton polarizability
using three separate approaches: (1) the finite-field method,
(2) the variational optimization of the first order wave
function, and (3) the Dalgarno-Lewis approach based on
solving Eq. (8) numerically. As evident from the figure, all
three approaches agree rather well. Moreover, the exact result
o =21/128 [25,29] is reproduced in the unscreened limit
ro — 0 corresponding to a 2D hydrogen atom. This agreement
testifies to the quality of the variational ansatz Eq. (5). Note,
also, that the limit as r( exceeds unity is well approximated
by the power-function fit o ~ 3.5 r(;'g. This means that po-
larizabilities far larger than the 2D hydrogen atom result can
be expected for ry > 1. In fact, for realistic values of ry in
TMDs, polarizabilities at least three orders of magnitude larger
than the unscreened value are found. Moreover, if additional
screening by the surrounding dielectrics is added, even larger
values result.

To extract quantitative polarizabilities for specific mate-
rials, the normalized a.u. results above are now converted,
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FIG. 2. Comparison of the exciton polarizability using different
computational approaches. The horizontal dashed line is the result
for the 2D hydrogen atom, and the inclined dashed line is a power-
function fit.

recalling that the a.u. of polarizability is e?a%/Ha = 1.03 x
10*2eV(m/V)?. To this end, the generic values in Fig. 2
are combined with the scaling Eq. (3) using ab initio values
for © and ry from Ref. [4]. For four important materials,
this yields the following: 7y)(MoS,) = 23.45//(2, Fo(MoSe;) =
26.13 /%, 7o(WSy) = 16.59/k2, and 7o(WSey) = 20.09/k>.
When plotted against the substrate screening «, the converted
exciton polarizability and binding energy are as shown in
Fig. 3. The unscreened (k = 1) exciton binding energy is
around 0.5 eV for all four materials, in agreement with
previous results [4]. This is reduced by nearly an order
of magnitude, as the substrate screening is increased ten-
fold. Importantly, the polarizability increases by an order
of magnitude with increased screening. Hence, at x = 10
the polarizability reaches values in the range of o =45 x
10718 eV(m/V)?to 70 x 10~'8 eV(m/V)?. Focusing on freely
suspended (¢« = 1) MoS, and WSe,, the polarizabilities are
a=46x10"8eV(m/V)?ande = 6.3 x 10718 eV(m/V)?,
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FIG. 3. Converted results for various TMDs. The main panel and
inset show the converted exciton polarizability and binding energy
versus substrate screening, respectively.

125424-3



THOMAS GARM PEDERSEN

respectively. However, by encapsulating the same materials in
hBN (k = 4.9 [30]), the polarizabilities become o = 14.2 x
10°18 eV(m/V)2 and o« =20.8 x 10718 eV(m/V)z, respec-
tively. For MoS,, this value is nearly two orders of magnitude
larger than the out-of-plane value [15]. Note that the ground
state exciton Stark shift for the x direction of phosphorene
on SiO; (k = 2.4) computed in Ref. [20] corresponds to a
polarizability of 7.4 x 107! eV(m/V)?. Hence, this value
agrees very well with the range predicted here. In addition,
the effective dielectric constant results of Ref. [21] are
a=3.1x 10718 eV(m/V)? for suspended MoS; and o =
6.1 x 1078 eV(m/V)? for MoS, encapsulated by single h(BN
sheets (in contrast to bulk hBN used here). These values also
agree reasonably with the present results.

III. EXCITON ELECTROABSORPTION

The effects of electrostatic fields on the absorptive proper-
ties of TMDs are now discussed. This constitutes the exciton
Franz-Keldysh effect that has previously been investigated
for one-dimensional [31], two-dimensional [19], and three-
dimensional semiconductors [32]. In the absence of excitonic
effects, the Franz-Keldysh effect manifests itself in field-
induced absorption below the band gap and characteristic
oscillations in the absorption spectrum above the gap [33].
The presence of bound excitons alters the spectral features in
a qualitative manner. Primarily, the Stark shift of the bound
states leads to a red-shift of absorption peaks in contrast to
the field-induced above-gap oscillations, which blue-shift with
increased electric field.

Computing the entire spectrum, including bound as well as
ionized states, is obviously more challenging than finding just
the exciton ground state. Assuming k-independent momentum
matrix elements, the exciton oscillator strength is determined
by the exciton wave function evaluated at the origin [34]. In
turn, the exciton susceptibility is given by the expression

B [Wexe(0)]2
X((l)) = X0 Z Eexc[E2 _ (hw + lhr)z] ’

exc exc

®

where xo is a material dependent constant. Also, the sum is
over all (bound and ionized) exciton states, with wave function
Yexe() and energy E.y. relative to the ground state. Finally,
A" is a phenomenological line shape broadening. In the
absence of the electrostatic perturbation, cylindrical symmetry
implies eigenstates of the form v,,,(F) = R,(r)exp(im0)
with m integer. Hence, the fact that the spectral response
is proportional to |1exc(0)|> means that only s-type states
having m = 0O contribute. The presence of the electric field
mixes states of different angular momentum m. To obtain an
accurate representation of the actual eigenstates, a large basis
covering a sufficient range of angular momenta is needed.
Also, the basis must contain elements sufficiently delocalized
to describe ionized states. One natural choice is a Bessel
function basis V,,,(¥) = J,, (At /R) cos(m®), where J,, is
the mth Bessel function of the first kind and A,,, is its nth
zero, i.e., J,, (A, ) = 0. This approach effectively corresponds
to introducing an infinite potential wall at r = R. However, if
R is sufficiently large, the effect of this artificial confinement
is negligible. Note that cos(m#6) rather than exp(im®) is used
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FIG. 4. Electroabsorption spectra of MoS, encapsulated by hBN.
The black curve is the unperturbed case. The inset is a zoom of
the exciton resonance with the vertical dashed lines indicating the
predicted Stark shifts.

as appropriate for a perturbation varying as cosf. For the
spectra below, a basis of seven different angular momenta
(m =0,...,6) and 400 states for each value of m has been
used. The radial potential wall is taken at R = ' - 500 a.u.
and A' = 20meV.

The Franz-Keldysh spectra of MoS, and WSe, encapsu-
lated in hBN are shown in Figs. 4 and 5, respectively. In
these spectra, only the A exciton is included. To simulate
more realistic spectra, the B exciton should be added as
a roughly identical spectrum displaced in energy by the
spin-orbit splitting. Also, the band gap has been adjusted such
that the A exciton coincides with the experimental resonance.
An important feature of these spectra is the observable
Stark shift of the fundamental exciton. The vertical lines
in both figures are the predicted Stark shifts based on the
polarizability discussed in the previous section. It is seen that
these predictions are in excellent agreement with the red-shifts
found in the numerical electroabsorption spectra. In addition,
the peak height decreases with field strength. This is natural
considering the fact that the field tends to separate electrons
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FIG. 5. Same as Fig. 4 but for WSe, encapsulated by hBN.
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FIG. 6. Out-of-plane polarizability versus potential barrier. The
full and dashed lines show finite and infinite barrier results, respec-
tively. The model and parameters are defined in the inset, illustrating
the tilted quantum well with polarized electron (green) and hole (blue)
states.

and holes and, thereby, decreases the oscillator strength
[Wexc(0)|%> [35]. The characteristic field-induced oscillations
in the above-gap spectrum are clearly visible for both MoS,
and WSe,. Moreover, the period of the oscillations increases
with field (roughly as £%/3) as anticipated [33]. The red-shift
of the bound exciton is expected to show in luminescence as
well as absorption. In addition, the field-induced oscillations
are expected to be visible in various types of spectroscopy,
including electroabsorption and electroreflection. The fact
that such pronounced features are predicted for moderate
field strengths of the order 10 V um~' means that future
experimental observations are certainly realistic.

IV. OUT-OF-PLANE POLARIZABILITY

As the pioneering experiments in Ref. [15] were concerned
with the out-of-plane polarizability, the crucial differences
with respect to the in-plane case considered above are now dis-
cussed. Nearly identical Stark shifts were measured in MoS;
samples consisting of one to five monolayers. However, the
applied photoluminescence detection technique presumably is
only sensitive to excitons, for which electrons and holes are lo-
cated in the same monolayer. Thus, the experiment effectively
probes individual monolayers. Electron-hole pairs in a TMD
monolayer of thickness d ~ 6.5 A are relatively insensitive to
perpendicular electric fields due to the tight confinement in
the out-of-plane direction. Moreover, such tight confinement
means that the electron-hole Coulomb attraction has little
influence on the carrier motion in this direction. Ignoring
atomistic details, the out-of-plane case can be modelled as
a square well for both electrons and holes, as illustrated in the
inset of Fig. 6. Here, for simplicity, identical barrier heights
Vo are assumed for both carriers. The polarizability of a single
particle of mass m in an infinite-barrier quantum well is (15 —
7%)/(127*) - md* a.u. [36,37]. Ignoring Coulomb effects, the
exciton polarizability is obtained by summing electron and
hole contributions, i.e., o™ = (15 — 72)/(127*) - Md* a.u.,
where M = m, 4+ my , is the total mass comprised of the
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effective masses for the out-of-plane direction (L). In the
supplementary information of Ref. [15], the polarizability
was incorrectly stated as a(fo) = pd* a.u., ie., without the
prefactor (15 — 72)/(127*) ~ 4.39 x 10~ and using the in-
plane reduced mass rather than the out-of-plane total mass.
This led to the conclusion that the infinite barrier model
was in good agreement with experiments. However, even if
free-electron masses are used for out-of-plane effective masses
so that M = 2, the correct expression oz(fo) ~ 2 x 4.39 x
1073d* an. ~ 200 a.n. ~ 2 x 1072 eV(m/V)2 is more than
an order of magnitude below the experimental value o) ~
2.4 x 107 eV(m/V)? [15].

Since Coulomb effects will serve only to reduce the
theoretical estimate, the reason for the discrepancy between
calculation and experiment must be sought elsewhere. The
most likely candidate is the unjustified assumption of infinite-
barrier confinement. In reality, finite barriers of the order V, ~
0.1 a.u. should be applied. The leakage of wave functions into
the barriers leads to an increase in polarizability. To accurately
model this effect, a quantum well with finite barriers is consid-
ered, and, again, the Dalgarno-Lewis [28] technique is applied,
similar to the treatment in Ref. [37]. Briefly, starting from
the exact unperturbed single-particle wave function ¥(x),
one writes the perturbed one as ¥ (x) = Yo(x)[1 — £ f(x)].
Solving the first order problem immediately provides the
derivative of f as f'(x) = 21#0_2()6) ffoo lpg(x’)x’dx’. Finally,
the polarizability is simply o) = Mffooo [wo(x)f’(x)]zdx.
This method is ideally suited to the present problem as the exact
unperturbed wave function is known once a simple nonlinear
algebraic equation for the energy is solved numerically [37].

In Fig. 6, the barrier dependence of the out-of-plane
polarizability is shown assuming M =2 and d = 6.5A =
12.3 a.u.. It is seen that quite a dramatic increase is found
compared to the infinite barrier limit. Thus, for V5 = 0.1 a.u.,
the polarizability increases by a factor of 4.4 relative to the
infinite barrier value. In the experiments [15], MoS, was
sandwiched between SiO, and Al,O5 barriers. The relevant
band offsets have been measured in Ref. [38]. Hence, for
the conduction band offset, one finds 3.01 eV and 3.56 eV
for MoS,/SiO, and MoS,/Al,03, respectively, while the
corresponding numbers for the valence band are 4.19 eV and
3.31 eV. Using the average of these values as an estimate,
it is found that Vjy ~ 3.5 eV = 0.128 a.u. corresponding to
an increase by a factor 3.7 relative to the infinite barrier.
This calculated value is still significantly smaller than the
experiment. However, a match with the experimental value
can be achieved if a slightly increased quantum well thickness
of d = 9.8 A is assumed. Hence, given the simplistic model
(square barriers, free-electron masses, no atomistic detail, etc.)
as well as uncertainties in the measured result, the agreement
with experiments is reasonable.

V. SUMMARY

In summary, the possibilities of manipulating excitons in
monolayer TMDs through in-plane electrostatic fields have
been explored. Excitons are described using a 2D Wannier
model incorporating the electric field and states are found
through a combination of diagonalization and variational
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approaches. The sensitivity to in-plane fields is predicted
to be much greater than the known effects of out-of-plane
fields. Including the influence of screening by surrounding
dielectrics, a further increase in sensitivity is found. Hence, for
MoS; encapsulated by hBN, the in-plane exciton polarizability
is nearly two orders of magnitude larger than the measured
out-of-plane value. The associated electroabsorption spectrum
displays a red-shift of bound excitons and characteristic
field-induced oscillatory spectral features above the band
gap. Clearly observable features that appear at field strengths
around 10 V um~! are predicted. Finally, the out-of-plane

PHYSICAL REVIEW B 94, 125424 (2016)

polarizability has been discussed in terms of a square well
model for the perpendicular confinement.
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