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Nonclassical effects in plasmonics: An energy perspective to quantify nonclassical effects
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Plasmons are commonly interpreted with classical electrodynamics, while nonclassical effects may influence
the dynamics of plasmon resonances as the plasmon confinement approaches the few-nanometer scale. However,
an unambiguous approach to quantify the degree of nonclassical dynamics remains. We propose a nonclassical-
impact parameter (NCI) to characterize the degree of nonclassical effects from an energy perspective, i.e., which
fraction of the total electromagnetic energy is attributed to classical electrodynamic terms and which fraction is
correspondingly to be assigned to nonclassical degrees of freedom? We show that the NCI relates directly to two
fundamental parameters of plasmon resonances: the loss function and the quality factor. Guided by the NCI, we
discuss the nonclassical effects of plasmon waveguiding modes of metallic slab waveguides, and highlight the
general features of the nonclassical effects at different microscopic levels by contrasting the numerical results
from the semiclassical hydrodynamic Drude model (HDM) and the microscopic random-phase approximation
(RPA). The formal relation between the HDM and the RPA is also established for metals by exploring the limit
of an infinite work function.
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I. INTRODUCTION

Plasmon resonances, collective oscillations of a free-
electron gas against a positive ion background, are subject
to significant attention [1–5]. Plasmon resonances, including
both localized-plasmon resonances and plasmon waveguiding
modes, can confine electric fields beyond the optical diffraction
limit [2]. This leads to numerous applications such as cancer
therapy [6], nanophotonics circuits [7,8], nanolasers [9,10],
and quantum information processing [11]. The majority of
these developments rely on our insight from classical electro-
dynamics where the Drude model for the intraband plasmonic
response of metals stands as a cornerstone [1,4]. This cel-
ebrated approach explains noble-metal plasmon phenomena
extremely well for plasmonic structures with characteristic
dimensions well above 5–10 nm [12]. However, the maturing
nanofabrication allows the realization and exploration of
yet smaller feature sizes [13–17]. When approaching the
few-nanometer or even subnanometer scale, an increasing
importance of nonclassical degrees of freedom (i.e., beyond the
Drude model) can be anticipated, and with increasing weights
[18]. Examples of such nonclassical degrees of freedom
include the kinetics associated with the finite compressibility
of the quantum electron gas [19,20] and the inhomogeneous
microscopic equilibrium distribution of the quantum electron
gas in the vicinity of a surface [21–23]. In Maxwell’s
equations, such aspects modify the local Drude permittivity
to a generalized nonlocal form [24]. With respect to different
nonlocal models, such as the semiclassical hydrodynamic
Drude model (HDM) and the microscopical random-phase
approximation (RPA), the commonly employed Drude model
is also referred to as the local-response approximation (LRA).

In recent years, efforts have been directed to theoretically
[20,24–31] and experimentally [13,14,32–38] investigating
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nonclassical effects of plasmon resonances in metals and
with interesting extensions to two-dimensional (2D) plas-
monic materials such as graphene [39–41]. In addition to
the fundamental interest in quantum-plasmonic phenomena,
we note that quantum-electronic control may open new
avenues in applications of nanoscale light confinement [18]
and plasmon-induced hot electrons [42,43]. For resonant
phenomena, the nonclassical effects usually manifest in
broadening and shifting of plasmon resonances [32,34,44–47].
In turn, nonclassical effects also smear singularity phenomena
predicted by the Drude model, such as perfect imaging
[48], nanofocusing [49,50], and the field enhancement at the
center of a touching dimer [51,52] that would otherwise be
singular [53]. Nonclassical dynamics may also be associated
with phenomena without any classical counterparts, such as
the mutipole surface-plasmon resonances at the interface of
simple metals [47], the charge transfer plasmon resonances
for dimers with subnanometric gaps [14,15,26,27,30,35], and
the quantized bulk-plasmon resonances above the plasma
frequency [54].

The theoretical understandings of nonclassical effects
of plasmon resonances usually employ the semiclassical
HDM [24,49,51,52,55–57], the RPA [39–41,58], or the time-
dependent density-functional theory (DFT) [26,29,47,59,60].
Elevating us beyond these different models, it is interesting
to ask if we can introduce a measure to quantify the degree
of nonclassical contributions to the plasmon dynamics. One
immediate candidate at hand is to associate such a parameter
with the resonance shift of plasmon modes when compared
to the LRA. Obviously, this would work for well-developed
resonances existing within the LRA, while it would not help to
appreciate quantum plasmon phenomena not holding classical
counterparts. To address a broader variety of nonclassical
phenomena, we here propose a nonclassical-impact parameter
(NCI) to characterize the nonclassical effects from a total
energy (UT = UC + UNC) perspective: NCI ≡ 2UNC/(UC +
UNC), where NCI = 0 for classical (C) dynamics, while
NCI = 1 for entirely nonclassical (NC) dynamics. As a key

2469-9950/2016/93(11)/115439(12) 115439-1 ©2016 American Physical Society



WEI YAN AND N. ASGER MORTENSEN PHYSICAL REVIEW B 93, 115439 (2016)

result we show that

NCI = 1 + Im
[
ε−1

PR

]
QPR

(1)

where QPR is the quality factor of the plasmon resonance while
−Im[ε−1

PR ] is the loss function; both established quantities in
the fields of plasmonics and electron energy loss spectroscopy
of plasmons [61].

The remaining part of the paper is organized as follows:
In Sec. II, with the HDM as the starting point, we parti-
tion different forms of the energies of plasmon resonances
including the contributions from the nonclassical effects.
Based on the energy considerations in Sec. II, we define
the NCI to characterize the nonclassical effects beyond the
HDM assumption in Sec. III. In Sec. IV, we discuss the
relation between the NCI and the electron-pressure wave,
and demonstrate the fundamental upper limit of the NCI for
plasmon waveguiding modes in the HDM. In Sec. V, with
the NCI, we investigate in detail the nonclassical effects by
numerical analysis of plasmon waveguiding modes of metallic
slab waveguides. In Sec. VI, the formal relation between the
HDM and the RPA is discussed in the limit of an infinite work
function. In Sec. VII, a summary and conclusions are given.
Some details of our derivations are left for Appendices A, B,
and C.

II. NONCLASSICAL KINETICS IN THE
HYDRODYNAMIC DRUDE MODEL

We start by introducing the HDM to describe the free-
electron gas. In short, the HDM seeks to account for the finite
compressibility of the quantum electron gas by incorporating
a pressure term in the equation-of-motion of electrons subject
to electromagnetic fields. Commonly, Thomas-Fermi theory
is used to describe the nonclassical (quantum) freedom of the
kinetic energy, which arises from the statistical distribution
of the free-electron gas, e.g., the Fermi-Dirac statistics in
equilibrium. The internal kinetic energy per particle is propor-
tional to max {EF,kBT }, where EF is the Fermi energy, while
kBT is the characteristic thermal energy. For metals such as
sodium, aluminum, silver, and gold, with the Fermi velocity
vF around 106 m/s and the effective electron mass close to
the electron rest mass, we typically have EF � kBT at room
temperatures [19], and consequently the nonclassical kinetic
energy is governed by EF. In the present paper, we focus
our attention on the above mentioned metals. In the HDM,
the classical Drude model is accompanied by an additional
diffusion-like gradient term [20],

Je = σDE − iωβ2

ω2 + iωγ
∇ρe. (2)

Here, Je and ρe denote the electric current density and
the electric charge density, respectively. Furthermore, γ is
the damping rate and σD = iε0ω

2
p/(ω + iγ ) is the classical

Drude conductivity with ωp being the plasma frequency. The
parameter β, associated with the nonclassical kinetic energy,
has the expression β2 = v2

F(3ω/5 + iγ /3)/(ω + iγ ) [62], and
gives the strength of the nonlocal relationship between E
and J. The HDM is usually combined with the assumptions
of a uniform equilibrium electron density and an infinite

work function. The two assumptions lead to (1) all material
parameters in Eq. (2), i.e., σD, γ , and β, are set to the
bulk values of the corresponding metal; (2) an additional
boundary condition is imposed, i.e., the vanishing of the
normal component of Je at the metal surface [20,63].

Before proceeding, we note that the HDM constitutes a
lowest-order correction of the LRA to include nonlocal effects
due to the finite compressibility of the quantum electron
gas. Apart from recent generalizations [64–66], the HDM
still neglects several important microscopic effects, including
the inhomogeneity of the equilibrium electron density and
its related correction to the nonclassical kinetic energy, and
the electron spill-out. Nevertheless, the main motivation here
of employing the HDM is to illustrate how the nonclassical
degrees of freedom are modifying the dynamics of plasmons.
This insight also leads us to our introduction of the NCI. At a
later stage, the assumptions associated with the HDM will be
relaxed.

Now, consider an arbitrary free-electron gas embedded in a
dielectric background with a relative permittivity εd (possibly
varying in space). In the electrostatic limit, the electromagnetic
fields associated with plasmon resonances respect [67]∫

dv[ED∗ + E∗D] = 0.

Utilizing Eq. (2), the above identity yields

UK = UE + UNC, (3a)

with

UK = 1

4

∫
dvmn0me|v|2, (3b)

UE = 1

4

∫
dvε0εd|E|2, (3c)

UNC = 1

4

∫
dvm

β2|ρe|2
ε0ω2

p

. (3d)

Here,
∫

dvm is the spatial integration performed over the
volume of the free-electron gas, with n0 being the equilibrium
electron density, while me is the effective electron mass. We
note that the same expressions can also be derived from the
Poynting theorem [68]. The total energy UT and the classical
energy UC are

UT = UK + UE + UNC, UC = UK + UE. (3e)

The physical meanings of UK,E,NC are indicated by their
expressions. In particular, UK is the time average of the
classical kinetic energy of the free-electron gas, and UE

relates with the energy of the electric field. UNC is the
nonclassical part of the energy. To appreciate the nonclassical
nature of UNC, we consider a free-electron gas with a density
n = n0 + n1 cos (ωt), where n0 and n1 are two constants with
n1 being a small perturbation. Assuming that electrons are
obeying Fermi-Dirac statics, the system has the nonclassical
energy density 3nEF/5. Accordingly, the time average of the
nonclassical kinetic energy density WNC contributed from the
dynamic perturbation n1 is

WNC = mev
2
F|n1|2

12n0
+ O

(
n4

1

/
n4

0

)
.
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In the limit where ω � γ with β2 � v2
F/3, one finds

UNC = ∫
dSmWNC by recalling that ρe = −en1 and ω2

p =
n0e

2/(meε0). This directly reveals the nonclassical origin of
UNC. If on the other hand ω � γ with β2 � 3v2

F/5, then
UNC � 9/5

∫
dSmWNC. Here, the prefactor 9/5 is deviating

from 1 owing to the fact that the Fermi-Dirac statistics no
longer applies as ω � γ [69].

III. NONCLASSICAL-IMPACT PARAMETER

A. Definition and semiclassical HDM considerations

The total energy of the plasmon resonance is given by
Eq. (3a). The Drude model invokes the LRA and is entirely
classical, i.e., UNC = 0. Plasmon resonances are characterized
by the harmonic energy transfer between the classical kinetic
energy of free electrons and the electric field energy of the
whole system, in analogy with optical resonances in dielectrics
with the energy transfer between the electric field energy and
the magnetic energy [70]. Including the nonclassical degrees
of freedom, UNC has a final share of the total energy, and this
modifies the classical plasmon dynamics accordingly.

Based on the above energy perspective, we here introduce
the nonclassical-impact parameter (NCI) that we already
highlighted in the Introduction:

NCI ≡ 2UNC

UC + UNC
= 1 − 2UE

UT
. (4)

In the classical Drude model, NCI = 0 as a direct result of
UNC = 0. Including the nonclassical effects in the HDM,
NCI deviates from 0, and more specifically becomes a
positive value. In the limiting case UE → 0 or equivalently
UT � UE, we have NCI → 1. In a hydrodynamic description
this limit corresponds to the regime where plasmons are
fully longitudinal oscillations, i.e., electron-pressure waves,
as discussed in the next section. The NCI is bounded between
0 and 1. The larger value of the NCI, the more noticeable
nonclassical effects.

As an example, we consider a metallic slab waveguide em-
bedded in a free-space background medium. For simplicity we
consider a lossless (γ = 0) free-electron metal with material
parameters ωp = 5.9 eV and vF = 106 m/s (corresponding to
sodium). Figure 1(a) depicts the dispersions of the symmetric
surface plasmon waveguiding modes (PWMs) for waveguide
widths of both d = 5 nm and d = 1 nm, contrasting both the
LRA classical Drude model (dash-dotted lines) and the HDM
(solid lines). The wave number kpw of the waveguide mode
is normalized by the Fermi wave number kF and likewise,
the frequency ω is conveniently normalized by the plasma
frequency ωp. In the Drude model, kpw shows a linear relation
with 1/d, indicating that kpw can be increased to any value
without limitations by decreasing d. In the HDM, such linear
relation is broken due to nonlocal effects which cut off the
large-kpw divergence (see Ref. [57] for details). Accordingly,
there is a ceiling to kpw (a maximal permitted value of
kpw), as we will discuss in the next section. Figure 1(b)
plots the NCI predicted by the HDM as a function of the
frequency ω. It is seen that the NCI follows a trend similar
to that of the wave number kpw in Fig. 1(a). In particular,
the NCI dramatically increases as ω exceeds the classical
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FIG. 1. The nonclassical effects for the symmetric surface PWMs
of a metallic slab waveguide (of widths d = 1 nm and 5 nm)
embedded in a free-space background. (a) Dispersion relations within
the HDM and the LRA classical Drude model are plotted as the solid
lines and the dash-dotted lines, respectively. (b) The NCI illustrated
as a function of the plasmon frequency. (c) The NCI illustrated as a
function of the plasmon wave number. The upper right inset illustrates
the mode profile of the symmetric surface PWM. The metal has the
material parameters ωp = 5.9 eV and vF = 106 m/s.

surface-plasmon frequency ωp/
√

2. Below this frequency the
plasmon field is predominantly of a transverse nature in good
accordance with the LRA, while it turns gradually more
longitudinal beyond this frequency. Figure 1(c) depicts the
NCI as a function of kpw. The NCI increases as the kpw

increases. This directly illustrates how its nonclassical nature
increases as kpw becomes larger. The observation can be
directly understood from Eq. (2) where the nonclassical term,
i.e., the gradient term, is roughly proportional to kpw.

As another example, we consider the NCI for the generic
problem of a free-electron metallic sphere embedded in free
space. Using a Mie formulation of the HDM [71], we find
to lowest order in the particle radius R that the NCI for
localized plasmon resonances directly manifests the nonlocal
blueshifting with

NCI = �ω

ωLRA
+ O

(
β2

ω2
pR

2

)

=
√

(	 + 1)(2	 + 1)

2

β

ωpR
+ O

(
β2

ω2
pR

2

)
.

Here, ωLRA is the plasmon resonance frequency in the LRA
limit (ωLRA = ωp/

√
3 for the dipole resonance with 	 = 1),

�ω is the HDM frequency blueshift with respect to ωLRA, and
	 = 1,2, . . . is the angular momentum number of the plasmon
resonance. This is a quite intuitive, but also remarkable
result which in turn shows how the loss function, the quality
factor, and the nonlocal blueshift constitute mutually linked
quantities, i.e., �ω/ωLRA � 1 + Im[ε−1

PR ]/QPR [see Eq. (1) or
the following subsection for definitions of εPR and QPR]. For
numerical illustrations, we consider a metallic sphere put in
a free-space background, and the material properties of the
metal are as in Fig. 1. The values of the NCI as a function
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FIG. 2. The nonclassical effects for the surface plasmon modes
of a metallic sphere embedded in a free-space background. The solid
lines show the NCI as a function of the reciprocal of the sphere
radius for the surface plasmon modes with 	 = 1,2,3,4, where 	

represents the angular momentum number of the plasmon mode. The
dash-dotted lines give the normalized nonlocal blueshifting �ω/ωLRA

of the plasmon modes. The inset illustrates the mode profile with
	 = 1. The material parameters of the metal are the same as in Fig. 1.

of the reciprocal of the sphere radius for the surface plasmon
modes with 	 = 1,2,3,4 are plotted in Fig. 2 (solid lines). It is
seen that the NCI increases its value as the radius decreases and
also the angular momentum number 	 increases. Additionally,
we also depict the normalized nonlocal blueshifting �ω/ωLRA

of the plasmon modes (dash-dotted lines). The values of the
NCI and �ω/ωLRA are close to each other especially when
the sphere radius is large, agreeing with the above analytical
analysis.

B. Microscopic RPA considerations

Above, we used the semiclassical HDM as our starting
point for our introduction of the NCI. However, our energy
considerations (involving UE and UT) go beyond this particular
model. Thus, the NCI can also be derived for microscopic
quantum models, where more subtle nonclassical effects can
be included. Here, we turn to the random-phase approximation
as the most common way of calculating the electromagnetic re-
sponse with a starting point in the single-electron eigenstates of
the equilibrium system. In the RPA, the exchange-correlation
contributions to the plasmon dynamics are omitted. We note
that, for our metals of interest with only modest electronic
correlations, the induced error is of only quantitative rather
than qualitative character.

To discuss the NCI in the RPA, we introduce the spectral
representation of the dielectric function operator ε(ω) with
[41,59,60]

|φtot〉 = ε−1(ω)|φext〉,
where |φext〉 and |φtot〉 represent the states of the external inci-
dent and resulting total electric potentials, respectively. Here,
ε(ω) = I − V χ0(ω), where V is the Coulomb interaction
operator defined by 〈r|V |f 〉 = − ∫

dr′e2〈r′|f 〉/4πε0|r − r′|,
and χ0(ω) is defined by 〈r|χ0(ω)|f 〉 = ∫

dr′χ0(ω,r,r′)〈r′|f 〉,
where χ0 is the noninteracting response function constructed
from the single-electron orbitals of the underlying equilibrium
system.

Plasmon resonances are associated with the poles of ε(ω)−1.
In particular, they are the eigenstates of ε(ω)

ε(ω)|φn〉 = εn(ω)|φn〉
with εn(ω) being zero. However, due to the loss, e.g.,
the electron-momentum relaxation associated with electron-
phonon scattering and the electron-hole pair excitations, the
pole will be slightly away from the real axis in the complex
frequency plane. Since this complicates the evaluation of the
complex-valued resonance frequency, we here make the sim-
plification to focus on the real part of the frequency (where εn

has a complex value). We define plasmon resonances in a loose
mathematical sense as the eigenstates with the loss function
−Im[εn(ω)−1] exhibiting a local spectral peak [41,59,60].
Those plasmon resonance (PR) eigenstates and eigenvalues
are specifically denoted as |φPR〉 and εPR, respectively. The
loss function −Im[ε−1

PR ] is a common concept in electron
microscopy of plasmons [61] where it quantifies the ability
of external free carriers (such as a focused electron beam
in an electron microscope where the swift electrons act as
the sources of |φext〉) to couple to plasmons and in this way
dissipate energy. Within the above framework, we find that the
NCI can be expressed in a rather elegant form, Eq. (1), that is

NCI = 1 + Im
[
ε−1

PR

]
QPR

,

comprising the loss function −Im[ε−1
PR ] and the quality factor

QPR, which characterizes the plasmon resonance lifetime. For
the details of the derivation we refer to Appendix A. Again,
we emphasize that in this way our new measure of quantum
effects is related directly to long-established key quantities
for plasmon resonances; quantities that can in principle be
evaluated by various methods and techniques ranging all
the way from microscopic theories and ab initio approaches
over semiclassical models to even experiments measuring the
far-field optical spectra and electron energy loss spectra of
plasmon resonances.

Note that compared to Eq. (4), the form of Eq. (1) no longer
involves UT, for which we do not find a simple expression in
the RPA, while quite conveniently the quality factor and the
loss function can be evaluated (see Appendix A for details).

Since we have arrived at Eq. (1) with more general
arguments, the expression is also valid for the classical
Drude model and the semiclassical HDM, since both models
represent different levels of approximations of the RPA. In
particular, the classical Drude model is the local-response ap-
proximation of the RPA, while the HDM is a k2 approximation
(k being the wave number of the electric potential after the
Fourier transformation) of the RPA. Thus, Eq. (1) offers a
generic recipe to quantify the nonclassical effects.

As an immediate consequence of Eq. (1), we have (in
agreement with Ref. [67])

QPR = −Im
[
ε−1

PR

]
(within the LRA) (5)

since the Drude model is classical and NCI = 0 within the
LRA. As an example, consider the bulk plasmon resonance for
a homogenous free-electron gas. In the classical Drude model,
the dielectric function operator ε(ω) is simply the Drude
permittivity εM = εB − ω2

p/ω(ω + iγ ), where εB is the
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FIG. 3. Equivalence between Eq. (1) (solid line) and Eq. (4) (data
points) illustrated by HDM calculation of the NCI for a symmetric
surface PWM of a metallic 5 nm slab embedded in a free-space
background. The material parameters of the metal are the same as
in Fig. 1. A phenomenological damping rate γ = 0.032ωp is added
when using Eq. (1), while the damping is neglected when evaluating
Eq. (4).

permittivity contributed from the bound electrons and is
assumed to be dispersionless. At the bulk plasmon res-
onance ω = ωp/

√
εB, εPR = εM/εB, and accordingly there

is −Im[ε−1
PR ] = ωp/(

√
εBγ ), which also gives the value of

the quality factor QPR according to Eq. (5). Thus, our
considerations are, for the LRA, in perfect line with the elegant
treatment of plasmon resonances in Ref. [67]. Further, to
confirm the equivalence between Eqs. (4) and (1), we use the
HDM to calculate the NCI of the symmetric surface PWM for a
metallic slab waveguide embedded in a free-space background.
The material parameters of the metal are the same as in Fig. 1,
and for the width of the waveguide we consider 5 nm. The
results are plotted in Fig. 3, where we observe that the values
of the NCI from either Eq. (4) or Eq. (1) agree perfectly with
each other.

In this section, the NCI is firstly introduced based on the
HDM in the lossless case. Then, we generalize the NCI to the
RPA framework, where the material losses are included. We
note that the material losses in the HDM are simply described
by a phenomenological parameter γ , and do not invite any
new forms of energy to plasmon dynamics. Thus, the NCI
in the HDM is nearly independent of γ . This is confirmed
by our numerical example in Fig. 3, where it is seen that
the values of the NCI from Eq. (4) with γ = 0, and Eq. (1)
with γ = 0.032ωp agree each other almost perfectly. Further
increasing γ to 0.1ωp, we numerically observe that the NCI
nearly stays unchanged (not shown in Fig. 3). In the RPA
theory, a new damping channel due to the electron-hole (e-h)
pair excitations is self-consistently included, which offer a new
degree of freedom to the nonclassical effects beyond the HDM
picture. Intuitively, we expect that the e-h pair excitations can
contribute to the NCI, which will be discussed in Sec. V A.

IV. NONCLASSICAL-IMPACT PARAMETER
AND ELECTRON-PRESSURE WAVES

In this section, we return to the HDM and discuss the NCI in
the context of longitudinal plasmon excitations. In the limiting
case with UE � UT, we have NCI → 1 as indicated by Eq. (4).
In this case, plasmon resonances exhibit a harmonic energy

kβ/ω

0.8ωp

Im
[

L
]

kβ/ω

0.2ωp

R
e[

L
]
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FIG. 4. Comparison of the longitudinal permittivities within
HDM and LRA at ω = 0.2ωp (left panels) and ω = 0.8ωp (right
panels). The material parameters are as in Fig. 1, while using
γ = 0.032ωp in the HDM. The squares mark the positions of kP while
shaded regions represent the RPA intraband electron-hole continuum.

transfer mainly between UK and UNC, but with negligible UE.
Consequently, the electric field term in Eq. (2) can be simply
neglected. Then, by applying the gradient operator to Eq. (2)
we get (∇2 + k2

P

)
ρe = 0, kP = ω

β
. (6)

The solutions to Eq. (6) are charge-density waves that we shall
here refer to as electron-pressure waves since the nonclassical
gradient term in Eq. (2) is commonly referred to as the
pressure term of the free-electron gas [69]. Thus, as NCI → 1,
the linear-response dynamics of the free-electron gas has the
property of an electron-pressure wave.

As mentioned above, the HDM is the k2 approximation
of the RPA of a homogenous electron gas. Consequently, it
is important to see whether the value of kP predicted by the
HDM is close to that of the RPA. In this context, we observe
that the longitudinal permittivity in the HDM is given by

εL = 1 − ω2
p

ω2 − β2k2 + iωγ
.

Clearly, kP is nothing but the resonance pole of εL if γ = 0.
Within the RPA this inspires us to extract kP in a similar way by
solving for the resonance of εL. As an example, we considering
a metal with properties as in Fig. 1. The left panel of Fig. 4
depicts εL as a function of k at ω = 0.2ωp for both the HDM
and the RPA. The shaded regions represent the intraband e-h
pair continuum, which contributes to the imaginary part of
εL in the RPA. In the HDM, a phenomenological damping
γ = 0.032ωp is added. Clearly, for both the HDM and the
RPA, εL exhibits the typical resonance features: the abrupt sign
change of Re[εL] accompanied by a peak in Im[εL]. The latter
feature is now employed to identify the resonance position
(marked by squares), i.e., the value of kP. We see that kP in the
RPA is close to that in the HDM with kRPA

P = 0.865kHDM
P . The

right panel of Fig. 4 depicts εL as a function of k at ω = 0.8ωp.
Comparing with the case of ω = 0.2ωp, we emphasize two
observations: (1) kP in the RPA deviates more from that in
the HDM with kRPA

P = 0.75kHDM
P ; (2) the resonance of the

electron-pressure wave in the RPA is more damped due to the
enhanced e-h pair excitations. In summary, the kP predicted by
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the HDM is qualitatively accurate and compares well with the
RPA, especially in the low-frequency regime.

In Fig. 3, we observe that the NCI increases as the PWM
wave number kpw grows. Thus, it is reasonable to conjecture
that the ceiling to kpw should correspond to the limiting case
NCI = 1, i.e., dynamics characteristic of an electron-pressure
wave. This immediately suggests the following relation:

kpw � kP. (7)

For a slab metallic waveguide in a homogenous dielectric
background, Eq. (7) has been demonstrated explicitly by
analyzing the dispersion equation [63]. It has also been
shown that such a ceiling is responsible for the limiting
value of the photonic density of states of layered hyperbolic
metamaterials [63]. Here, based on the arguments from the
energy perspective, Eq. (7) is provided without any detailed
specifications of either the underlying waveguide geometry or
the embedding medium’s dielectric properties. This suggests
that Eq. (7) should be universally valid within the HDM,
which is rigorously proven in Appendix B. To allow kpw to
approach kP, Fig. 1 tells us that one should either make the
waveguide’s transverse dimensions small or alternatively aim
for the high-frequency regime. However, even if the waveguide
would hypothetically be as thin as one atomic layer, kpw

would still be far away from kP, as will be demonstrated in
the next section. Additionally, in the high-frequency regime,
the enhanced loss due to the e-h pair excitations can reduce the
plasmon lifetime greatly (as observed in Fig. 4), which would
make experimental observations difficult. In this sense, the
fundamental ceiling defined in Eq. (7) is perhaps not posing a
real practical limitation in the presence of realistic damping,
but it rather serves as a theoretical concept manifesting the
more ultimate limitation associated with the spatial dispersion
of electron-pressure waves and their nonclassical kinetic
energy.

V. NUMERICAL ANALYSIS

The HDM invokes the following approximations and
assumptions: (a) the k2 approximation of the RPA; (b) a
uniform equilibrium electron density; (c) an infinite work
function. To investigate the nonclassical effects beyond these
simplifications, we here employ the microscopic RPA for
numerically analyzing the PWMs of metallic slab waveguides.

The RPA automatically lifts the k2 approximation inherent
to the HDM. Procedures to further relax the remaining
approximations and assumptions will depend on the partic-
ular choice of the single-electron potential Vel. Here, two
different models for Vel are considered. One approach is
the infinite work function (IFW) potential well, in which
Vel = 0 inside the metal, i.e., the region occupied by the
jellium ion background, while Vel → ∞ outside the metal,
as illustrated in the left inset of Fig. 5. In this case, the
assumption of the uniform electron density is relaxed. This
allows for Friedel oscillations in the equilibrium electron
density, while quantum spill-out is suppressed due to the IWF
(for an early application of the infinite-barrier idea to plasmons,
see Ref. [72]). The other choice involves a single-electron
potential Vel treated self-consistently within DFT—a more
accurate description [73], as illustrated in the right inset
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FIG. 5. Dispersions of the symmetric PWMs for a metallic
5-nm-wide slab waveguide embedded in free space. The results are
computed within the HDM (dash-dotted lines), the IFW-RPA (left)
and the DFT-RPA (right). The material parameters of the metal are
chosen as in Fig 1.

of Fig. 5. In the DFT, the local-density approximation of
the exchange-correlation energy is employed. In this case,
the assumptions of the uniform electron density and the
infinite work function are both elevated. In the following,
our comparison of the two RPA descriptions (the IFW-RPA
and the DFT-RPA) and the HDM will exhibit nonclassi-
cal effects of plasmon resonances at different microscopic
levels.

A. Metallic slab

Figure 5 depicts the dispersions of the symmetric PWMs
for a metallic slab of width 5 nm, contrasting the results
from the HDM (dash-dotted lines), the IFW-RPA (left), and
the DFT-RPA (right). In the DFT, we employ the jellium
approximation for the ion lattices, and self-consistently obtain
a work function of 3 eV (see the inset of the right part of Fig. 5).
The material parameters of the metal are as in Fig. 1, while
a phenomenological damping rate γ = 0.032 ωp is included.
For the IFW-RPA and the DFT-RPA, we illustrate the largest
values of the loss function −Im[εn

−1] (see Sec. III B) divided
by the frequency, whose local peaks represent the PWMs. The
demonstrated PWMs include both the surface PWMs and the
bulk PWMs above ωp.

We focus on the surface PWMs (the mode of the low-
frequency branch). The results of the HDM and the IFW-RPA
agree with each other. This indicates the quantitative agree-
ment between the two models when it comes to characterizing
the properties of the surface screening of the free-electron gas.
This will be further discussed in Sec. VI. For the DFT-RPA, the
predicted surface PWMs exhibit (1) redshifting with respect
to the HDM and IFW-RPA and (2) more damping as kpw

increases. These two observations are attributed to the electron
spill-out permitted by a finite work function. In particular,
the increased damping is related to the enhanced e-h pair
excitations near the jellium boundary (surface scattering) due
to the electron spill-out, as recently discussed in Refs. [22,23].

To quantify the nonclassical effects, we next compute
the NCI. Figure 6 depicts the NCI for the surface PWMs
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FIG. 6. (Upper panel) The NCI for the symmetric surface PWMs
in Fig. 5 contrasting the HDM, the IFW-RPA, and the DFT-RPA
results. (Lower panel) γe-h, the damping rate of the surface PWMs
contributed from the e-h pair excitations contrasting the IFW-RPA and
the DFT-RPA. The DFT-RPA results are illustrated as stripes, with the
vertical width representing the numerical uncertainty of determining
the quality factor of the PWM.

considered in Fig. 5, contrasting the HDM, the IFW-RPA, and
the DFT-RPA. To compute the NCI in the RPA, the quality
factor of the PWMs is needed. While this is indeed feasible,
we note that the numerical determination of the quality factor
comes with a small numerical uncertainty, especially for the
DFT-RPA (see Appendix A for details). To visualize the
numerical accuracy, the NCI for the DFT-RPA is accompanied
by a shaded region representing the numerical uncertainty.
The IFW-RPA gives an NCI close to that of the HDM, which
is consistent with the agreement of their mode dispersions in
Fig. 5. This suggests that the nonclassical energy of the PWMs
in the IFW-RPA is mainly in the form of the hydrodynamic-like
nonclassical kinetic energy. The DFT-RPA reveals a higher
value of the NCI, which underlines the account for extra
nonclassical degrees of freedom. It is reasonable to deduce
that such extra degrees of freedom are associated with the
finite work function and the associated electron spill-out,
which constitute the main difference between the DFT-RPA
and the other two models. As an evidence for this, we also
plot the damping rate γe-h due to e-h pair excitations in Fig. 6.
It is seen that γe-h is higher within the DFT-RPA than in the
IFW-RPA. Thus, for the DFT-RPA, the proportion of energy
carried by the e-h pairs is larger, which of course in turn
serves to increase the NCI. However, a quantitative estimate
of how many percentages of the NCI is contributed from the
e-h excitations is technically difficult due to the complicated
form of the RPA response function, and deserves a future
study.

B. 2D metallic monolayer

In Sec. IV, we discussed the fundamental ceiling kP to
the wave number of PWMs as described within the HDM.
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FIG. 7. Dispersions of the symmetric PWMs for a metallic 2D
atomic monolayer. The results are computed within the HDM (dash-
dotted lines), the IFW-RPA (left), and the DFT-RPA (right). The
fundamental ceiling for the wave number kP is also shown (solid
lines). The atomic monolayer is chosen to represent the (100) surface
of sodium, as illustrated in the inset in the left panel.

To approach this fundamental ceiling, it is preferable to
have metallic waveguides with reduced transverse dimensions.
Considering a metallic slab, the thinnest imaginable slab is
conceptually that of a two-dimensional (2D) atomic monolayer
[74]. In this subsection, we will investigate the PWMs of
such a monolayer and discuss the practical feasibility of
approaching kP.

For the free-electron gas supported by a 2D atomic
monolayer, the hydrodynamic equation, Eq. (2), requires a
slight modifications owing to the dimensional reduction. In
particular, Je and ρe in Eq. (2) are the induced electric
current density and electric charge density on the 2D plane.
Additionally, the Drude conductivity is expressed as σD =
in2D/me(ω + iγ ) where n2D is the equilibrium-electron den-
sity of the 2D monolayer. Furthermore, the nonlocal parameter
β is

√
3/4v2DF for ω � γ , and

√
1/2v2DF for ω � γ , where

v2DF is the Fermi velocity of the 2D free-electron gas [75,76].
Besides the HDM, we also employ the IFW-RPA and the
DFT-RPA to characterize the PWMs. In the IFW-RPA, the
width of the infinite work function potential well tIFW is chosen
by n0tIFW = n2D. For the DFT-RPA, the ion pseudopotential
proposed by Ashcroft [77] is used to describe the ion lattices
beyond the jellium approximation. Finally, for numerical
convenience we neglect the dependence of the pseudopotential
on the 2D lattice by spatial averaging within the plan while
preserving the out-of plane modulation of the potential (see
right inset in Fig. 7).

The atomic monolayer of the (100) surface of sodium
is taken as a thought example. Such a monolayer would
have a square lattice with lattice constant a0 = 4.23 Å and
accordingly n2D = 1/a2

0 . Figure 7 depicts the dispersions of the
symmetric PWMs, contrasting the HDM (dash-dotted lines),
the IFW-RPA (left), and the DFT-RPA (right), and the ceiling
wave number kP (solid lines). With our eyes guided by the
mode dispersion of the HDM, we observe that the results
predicted by the HDM and the IFW-RPA have a good mutual
agreement, while the mode dispersion of the DFT-RPA exhibits
a redshifting and an enhanced damping as kpw increases.
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FIG. 8. The NCI (upper panel) for the symmetric PWMs consid-
ered in Fig. 7, contrasting the HDM, the IFW-RPA, and the DFT-RPA.
The damping rate γe-h (lower panel) of the surface PWMs contributed
from the e-h pair excitations, contrasting the IFW-RPA and the
DFT-RPA. For the DFT-RPA results, the shaded region illustrates
the numerical uncertainty of determining the quality factor of the
PWM.

Additionally, we see that the fundamental ceiling wave number
kP is much larger than kpw. This consolidates our previous
statement that kP mainly constitutes an ultimate limitation
for plasmon focusing beyond the diffraction limit of light
[57,63,78,79].

Figure 8 depicts the NCI for the PWMs in Fig. 7. Similar
to our observations in Fig. 6, the values of the NCI are
close to each other for the HDM and the IFW-RPA, while
the DFT-RPA predicts a higher value due to the inclusion
of additional nonclassical degrees of freedom. In Fig. 8 we
also plot γe-h, contrasting the IFW-RPA and the DFT-RPA.
We see that γe-h for the IFW-RPA is nearly zero and this
also holds approximately in the DFT-RPA for kpw smaller
than 0.25kF (marked by the vertical dash-dotted line). The
reason is that the plasmon dynamics of such a monolayer
resembles the intraband dynamics of an ideal 2D electron gas
as long as the excitation energy is smaller than the minimum
energy Eint required for e-h interband excitations. For the
IFW-RPA the energy should exceed Eint = 63.9 eV, while
for DFT-RPA the energy is much reduced to Eint = 1.8 eV.
Accordingly, when the energy is smaller than Eint, the e-h
pair excitations can only originate from intraband excitations,
which is impossible for kpw < ω/vF2D [19]. For the DFT-RPA,
the e-h interband excitations are possible when the excitation
energy exceeds 1.8 eV, and can be further enhanced as the
excitation energy approaches and eventually exceeds the work
function of 2.32 eV. This explains our observations discussed
earlier in this paper: the γe-h remains low unless kpw > 0.25kF,
in which case the excitation energy favors noticeable e-h
interband excitations. Finally, it is interesting to note that
the numerical uncertainties of the NCI and γe-h exhibit a
correlation with the magnitude of γe-h, which is discussed in
more detail in Appendix A.

As another example of a 2D material, we briefly discuss
doped graphene nanostructures [80]. On the one hand, classical
electrodynamics will be unable to resolve atomic-scale details.
On the other hand, the underlying graphene lattice can in
fact be cut into flakes in two distinct different ways which
host slightly different electronic properties: flakes where
edge-atoms are configured in either an armchair or zigzag
fashion. The latter gives rise to localized electronic edge
states not supported by the former. These zigzag edge-states
host additional optical transitions not found for armchair
structures [40]. This is indeed also seen for the plasmon
spectra of ribbons [39] and triangularly shaped flakes [41],
where zigzag structures exhibit additional quantum dynamics
not exhibited by the armchair counterparts [40]. In fact, the
different magnitude in loss functions reported in Ref. [41] are
in agreement with our anticipation that the zigzag structures
exhibit a larger NCI than their armchair counterparts.

VI. DISCUSSION

The numerical results of the PWMs for a metallic slab
show an excellent agreement between the HDM and the IFW-
RPA; see Figs. 5 and 7. Is this just by pure accidence or is it
a manifestation of two more closely connected approaches?
Here, we argue that the latter is indeed the case. We note that
a formal relation between the HDM and the RPA is already
established in Sec. IIB of Ref. [81], while in Appendix C we
revisit the problem to offer a more explicit connection between
the HDM and the IFW-RPA.

It should be emphasized that the (semi-)infinite electron
gas obviously does not support any discretization of electron
orbitals, i.e., quantum-size effects associated with the particle-
in-a-box picture [82]. For an arbitrary confined electron gas
occupying a finite region of space, quantum size effects
would be captured in the RPA of the bounded electron gas,
but not in the corresponding HDM. This can lead to an
additional discrepancy between the HDM and RPA for the
bounded electron gas. However, only minor differences are
to be anticipated if quantum confinement is limited, i.e., for
dimensions of the metal volume significantly exceeding the
Fermi wavelength.

For noble metals, the Fermi wavelength is subnanometric
(λF ∼ 0.5 nm), and in few-nanometer sized metal particles
thermal smearing would typically exceed the level spacing
of the particle-in-a-box picture. For weakly doped semicon-
ductors and low-dimensional materials, the Fermi wavelength
can be much longer and quantization effects can indeed
appear (quantized conductance is a famous consequence of this
[83,84]). Additionally, in the extreme case like a 2D monolayer
where strong out-of-plane quantum confinement may serve
to only have electrons occupying a single 2D subband, the
HDM for a 2D in-plane bounded electron gas again serves
the k2 approximation of the RPA for the corresponding
bounded electron problem. From this perspective, the observed
numerical agreement between the HDM and the IFW-RPA
in Figs. 5 and 7 is to be expected. For doped graphene
nanostructures (without edge-state contributions associated
with zigzag edge termination) we have also reported similar
good agreement between HDM and RPA [40].
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VII. CONCLUSIONS

In conclusion, we have proposed a nonclassical-impact
parameter (NCI) to quantify the nonclassical effects of
plasmon resonances from an energy perspective. Importantly,
we have provided a general expression for the NCI which
links up to quantities commonly employed within classical
electrodynamics in the discussion of plasmon resonances: the
loss function and the quality factor. We have discussed the
relation between the limiting value of the NCI and the electron-
pressure wave in the hydrodynamic Drude model (HDM) and
explored the ultimate ceiling to the confinement of the plasmon
waveguiding modes. Guided by the NCI, nonclassical effects
have been explored numerically for plasmon waveguiding
modes, contrasting the HDM and the microscopic random-
phase approximation (RPA). Finally, we have detailed the
formal relation between the HDM and the RPA for a metal
slab represented as an infinite work function potential well.

ACKNOWLEDGMENTS

We acknowledge Thomas Christensen for catalyzing our
conceptual development of the nonclassical-impact param-
eter and thank Martijn Wubs for insightful comments on
our manuscript. The Center for Nanostructured Graphene
is sponsored by the Danish National Research Foundation,
Project No. DNRF58. The work was also supported by the
Danish Council for Independent Research-Natural Sciences,
Project No. 1323-00087. W.Y. is financially supported by the
Lundbeck Foundation, Grant No. 70802.

APPENDIX A: DERIVATION OF EQ. (1)

For plasmon resonances, the total energy UT and the power
dissipation PL are related by the quality factor QPR through
the relation

UT = PLQPR

ωPR
. (A1)

Thus, we already see how the quality factor enters Eq. (4).
Next, as mentioned in Sec V, plasmon resonances relate with
the eigenstate of the dielectric function operator ε, which in
its spectral representation can be expressed as [59,60]

ε(ω) =
∑

n

εn(ω)|φn(ω)〉〈ρ̃n(ω)|.

Here |φn(ω)〉 represents the eigenstate of ε. The |φn(ω)〉 and
|ρn(ω)〉 satisfy the potential-density relation

∇ · εd(r)∇〈r|φn(ω)〉 = −〈ρ̃n(ω)|r〉
ε0

.

Among |φn(ω)〉, the electric potential state of the plasmon
resonance is denoted as |φPR(ωPR)〉. The eigenvalue is |ρPR〉
with Im[ε−1

PR ] exhibiting a peak at ωPR. The related electron
charge density state |ρPR〉 at ωPR is defined by

|ρPR〉 = 〈ρ̃PR|.
Next, consider an arbitrary external electric potential state
|φext〉 at the resonant frequency ωPR incident on the plasmonic
structure. The induced potential state of plasmon resonances,

denoted as |φi
PR〉, has the expression∣∣φi

PR

〉 = ε−1
PR

〈ρ̃PR|φext〉
〈ρ̃PR|φPR〉 |φPR〉.

The dissipation energy contributed from |φi
PR〉 is

PL = −1

2
Im

[
ε−1

PRωPR
〈ρ̃PR|φext〉
〈ρ̃PR|φPR〉 〈φext|ρPR〉

]
, (A2)

and the electric field energy associated with |φi
PR〉 is

UE = 1

4

∣∣ε−1
PR

∣∣2
∣∣∣∣ 〈ρ̃PR|φext〉
〈ρ̃PR|φPR〉

∣∣∣∣
2

〈φPR|ρPR〉. (A3)

With Eq. (A1), expressions for PL and UT can be derived and
Eq. (4) is eventually rewritten as

NCI = 1 − 1

QPR
Im

[(
ε−1

PR

)∗ 〈φext|ρPR〉〈φPR|ρ̃PR〉
〈φext|ρ̃PR〉〈φPR|ρPR〉

]
. (A4)

To excite plasmon resonances, the most efficient way is to
choose |φext〉 ∝ |φPR〉. In this way we finally arrive at Eq. (1).

We note that the NCI is an intrinsic property of plasmon
resonances, and should be independent of the external poten-
tial. However, the NCI in Eq. (A4) shows a dependence on the
external potential, and Eq. (1) is derived with a special choice
of |φext〉. This is because |φPR〉 is only a close approximation to
plasmon resonances with losses. Evidently, if the loss is zero,
we have |ρPR〉 = |ρ̃PR〉, and the dependence on the external
potential of the NCI is removed. The final expression of the
NCI is again Eq. (1).

To compute the NCI, QPR and Im[ε−1
PR ] are needed. Im[ε−1

PR ]
can be directly computed by solving the eigenvalues of the
operator ε. For QPR, it can be expressed as

QPR = ωPR

γPR
, (A5)

with γPR defined as the resonance width of −Im[ε−1
PR ]. To

determine γPR, we use a Lorentzian function to fit the spectrum
of Im[ε−1

n (ω)], and the width of the fitted Lorentzian function
is γPR. From the numerical observations, it is found that such a
scheme to determine γPR is appropriate for the IFW-RPA with
the fitting error below 1%. However, for the DFT-RPA, the
fitting error for parameters in Figs. 6 and 8 is larger with the
highest value approaching approximately 4%. The fitting error
gives the numerical uncertainty of γPR, which is visualized by
the shaded regions in Figs. 6 and 8. Further, we deduce that the
larger fitting error in the DFT-RPA is related to the stronger
e-h excitations, which distort the resonance spectrum from the
Lorentzian shape. The deduction is indirectly evidenced by the
observations in Fig. 8 that the numerical uncertainty increases
with γe-h.

APPENDIX B: PROOF OF EQ. (7)

To prove Eq. (7), we first rewrite Eq. (2) in terms of the
polarization field P defined by P = iε0Je/ω and the electric
field E:

P + β2

ω2
∇∇ · P = −ω2

p

ω2
E. (B1)

Here, we have without loss of generality suppressed the
damping γ . Next, by applying the operation

∫
dsm P ∗

z ẑ· to
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both sides of Eq. (B1) we arrive at

k2
pw = k2

P +
∫

dsmω2
pEzP

∗
z /β2 − ikpwP|| · ∇||P ∗

z∫
dsm|Pz|2 . (B2)

Here, the cross-sectional plane of the waveguide is chosen to
be the x-y plane and subscripts are used to indicate vector
components parallel to the cross-sectional plane. To derive
Eq. (B2), we employed the additional boundary condition that
the normal component of P is vanishing at the boundary. Next,
we focus on the integrand (in the following denoted by p) in
the numerator on the right-hand side of Eq. (B2):

p = ω2
p

β2
p1 + p2, (B3)

where

p1 =
∫

dsm EzP
∗
z ,

p2 =
∫

dsm − ikpwP|| · ∇||P ∗
z .

For p1, we may write the electrical field as Ez = −ikpwφ,
where φ represents the electric potential, and for the po-
larization we have Pz = ikpwφω2

p/ω
2 − ikpw∇2φβ2/ω2 from

Eq. (B1). In this way we have

p1 = −
∫

dsm

(
k4

pwβ2 + k2
pwω2

p

ω2
|φ|2 − k2

pwβ2

ω2
φ∇2

||φ
∗
)

.

Using the identity φ∇2
||φ

∗ = ∇|| · (φ∇||φ∗) − |∇||φ|2, the in-
tegral

∫
dsmφ∇2

||φ
∗ is found to be

−
∫

dsm |∇||φ|2+
∮

dlmφ||∇φ∗ · n̂.

Here,
∮

dlm is the integration along the boundary of the
metal side, and n̂ is the surface normal pointing outward
the metal. Employing the boundary conditions that φm = φd

and ∇||φm · n̂ = εd∇||φd · n̂, where the subscripts “m” and
“d” indicate the quantities at the boundary belonging to the
metal and the embedding dielectric medium, respectively, the
integration

∮
dlmφ||∇φ∗ · n̂ can be rewritten as∫

dsdεd
(|∇||φ|2 + εdk

2
pw|φ|2).

In summary, we have

p1 = −
∫

dsm

(
k4

pwβ2 + k2
pwω2

p

ω2
|φ|2 + k2

pwβ2

ω2
|∇||φ|2

)

−
∫

dsm

(
εdk

4
pwβ2

ω2
|φ|2 + εdk

2
pwβ2

ω2
|∇||φ|2

)
.

For the dielectric background with εd > 0, it is clear that p1 <

0.
Next, we turn to p2. The potential φ in the metal can be

decomposed into the transverse component φT and the longi-
tudinal component φL, respectively. These potentials satisfy
∇2φT = 0 and ∇2φL + k2

LφL = 0, where kL =
√

ω2 − ω2
p/β.

In terms of φT and φL, P is expressed as

P = (∇|| + ikpwẑ)

[
ω2

p

ω2
φT + φL

]
.

The above expression directly leads to

p2 = −
∫

dsm k2
pw

∣∣∣∣∣ω
2
p

ω2
∇||φT + ∇||φL

∣∣∣∣∣
2

,

which implies that p2 < 0. With Eq. (B2) and the inequalities
p1 < 0 and p2 < 0, we now finally arrive at Eq. (7).

APPENDIX C: HDM VERSUS IFW-RPA

First, consider an extended electron gas with a uniform
equilibrium-electron density. In this case, it is known that the
HDM is the k2 approximation of the RPA. We represent this
symbolically as

RPAo
k2 approx.−−−−−→ HDMo. (C1)

with the subscript reminding us of the underlying equilibrium
assumption of an infinite homogenous electron gas.

Next, consider the bounded electron gas, where the spatial
extension is now finite. In this case, the HDM assumes a
uniform equilibrium electron density while the act of an infinite
work function is incorporated in the equations through an
additional boundary condition that accounts for the vanishing
electron flux through the surface of the metal. For clarity, we
symbolically denote this model as “HDMb” in order to clearly
distinguish it from the case of the infinite electron gas. To
establish the relation between the HDMb and the RPA, we
turn to the HDMb in an integral form,

ρe(r) =
∫

dr′χHDMb (ω,r,r′)[e2φ(r′)],

resembling the form within the RPA. For an arbitrary electron
gas, we do not find a general way to derive the expression of
χHDMb . To make progress, we put the generality aside and focus
on the specific case of a semi-infinite electron gas with a planar
boundary. The new light shed by this specific example will
then guide us to a more general conclusion. The semi-infinite
electron gas is located at x � 0. With Eq. (2) and the additional
boundary condition, χHDMb is then derived:

χHDMb (ω,r,r′) = χHDMo (ω,r,r′) + χHDMo (ω,r,Pxr′). (C2)

Here, χHDMo is the response function of the HDM for the
infinite homogenous electron gas and Px is the parity operator
on the x coordinate defined by Pxr = {−x,y,z}. The first
response function has the expression

χHDMo (ω,r,r′)

= − n0

meβ2
δ(r − r′) − n0k

2
P

4πmeβ2|r − r′|e
ikP|r−r′|,

where kP is the wave number of the electron-pressure wave
defined in Eq. (6). Eqs. (C1) and (C2) together suggest that the
HDMb can be considered the k2 approximation of a specific
RPA denoted as RPAb, with the response function χRPAb
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being

χRPAb (ω,r,r′) = χRPAo (ω,r,r′) + χRPAo (ω,r,Pxr′). (C3)

Here, χRPAo is the response function of the RPA for the infinite
homogenous electron gas. With the expression of χRPAo , the
χRPAb can be written as

χRPAb = χIFW

2
+ χZMB

2
, (C4)

with χIFW being the response function for the IFW-RPA, whose
physical meaning is presented in Sec. V. In the second term,
χZMB is the response function for the bounded electron gas
satisfying the boundary condition that the normal component
of the derivative of the electron wave function is vanishing at
the surface. This boundary condition is mathematically well
defined, provided that the electron mass approaches zero at
the boundary, i.e., a zero-mass boundary (ZMB). The relation
between the HDMb and the RPAb for the semi-infinite electron

gas can now be symbolically summarized as

IFW-RPA

2
+ ZMB-RPA

2
k2 approx.−−−−−→ HDMb. (C5)

Below, we provide an intuitive shortcut to better appreciate
Eq. (C5). First, in the IFW-RPA and the ZMB-RPA, the
electron wave functions ψ are determined by the bound-
ary conditions ψIFW(x = 0) = 0 and ∂ψZMB(x = 0)/∂x =
0, respectively. Thus, we have ψIFW ∝ sin(kxx)eik|| ·r|| and
ψZMB ∝ cos(kxx)eik|| ·r|| , where the subscripts indicate the
parallel components of the vectors in the y-z plane. The wave
functions ensure that the normal component of the electron
current vanishes at the boundary, which is consistent with
the additional boundary condition in the HDMb. Additionally,
a uniform equilibrium electron density is assumed within
the HDMb. This feature is respected by the average of
the equilibrium electron density of the IFW-RPA and the
ZMB-RPA, i.e., n0(x) ∝ |ψIFW|2 + |ψZMW|2 ∝ cos2(kxx) +
sin2(kxx) ∝ constant. Thus, important features of the HDMb

are all covered by the average of the IFW-RPA and the
ZMB-RPA, which highlights the validity of Eq. (C5).
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