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Electronic transport in graphene nanoribbons with sublattice-asymmetric doping
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Recent experimental findings and theoretical predictions suggest that nitrogen-doped CVD-grown graphene
may give rise to electronic band gaps due to impurity distributions which favor segregation on a single sublattice.
Here, we demonstrate theoretically that such distributions lead to more complex behavior in the presence of
edges, where geometry determines whether electrons in the sample view the impurities as a gap-opening average
potential or as scatterers. Zigzag edges give rise to the latter case, and remove the electronic band gaps predicted
in extended graphene samples. We predict that such behavior will give rise to leakage near grain boundaries with a
similar geometry or in zigzag-edged etched devices. Furthermore, we examine the formation of one-dimensional
metallic channels at interfaces between different sublattice domains, which should be observable experimentally
and offer intriguing waveguiding possibilities.
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I. INTRODUCTION

The high Fermi velocity and linear electronic dispersion
in graphene appear promising for electronic devices [1]. The
absence of an intrinsic band gap is a potential stumbling block
for many applications. A range of possibilities is being investi-
gated to redress this. Many involve geometric constraints in the
form of, e.g., finite-width nanoribbons [graphene nanoribbons
(GNRs)] [2] or periodic perforations [3]. An alternative route
is the manipulation of the atomic level structure. A hexagonal
graphene lattice is composed of two intersecting triangular
sublattices, A and B, shown by open and solid symbols,
respectively, in the top panels of Fig. 1. The equivalence of
these leads to a gapless band structure. A sublattice dependent
potential opens a band gap and gives mass to the charge
carriers. A possible implementation is to place graphene on
a substrate, such as hexagonal boron nitride (hBN), which
offers a potential varying on approximately the required length
scale [4]. However, the potential here is quite weak and lattice
mismatches give rise to larger scale moiré features [5–7].

Recent experiments suggest another route to breaking
sublattice equivalence. Nitrogen-doped graphene grown by
chemical vapor deposition (CVD) can show unusual distribu-
tions of substitutional N atoms. Large domains are found with
N atoms primarily occupying a single sublattice [8–12]. This
behavior depends on growth conditions, and theoretical works
suggest possible mechanisms including preferential impurity
positioning relative to the edges during growth [13] and
interimpurity interactions in disordered ensembles [14,15].
Subsequent studies of N-doped graphene treated by high-
temperature annealing [16], and of graphene decorated by
hydrogen adatoms [17], suggest that asymmetric distributions
may also arise in other scenarios. Such doping leads to
different average potentials on each sublattice and is equivalent
to introducing an effective mass term. Extended graphene
sheets with sublattice-asymmetric impurity distributions are
predicted to display electronic and transport band gaps, and
electron-hole asymmetry in their conductivity [18–22].
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In this paper we focus on nanoribbons with sublattice-
asymmetric doping. This is motivated both by the possibility
of etching [23] and transferring [24] devices from doped
graphene sheets and by the need to understand the interplay
between the effective mass term introduced by such doping
and effects induced by symmetry-breaking edges. This is
important since CVD-grown graphene contains extended
edgelike defects in the form of grain boundaries [25–28],
unlike bottom-up approaches which may allow the synthesis
of more precise geometries [29]. We are further motivated by
the strong dependence of GNR transport on edge geometry
and impurity distribution [30–43] and by sublattice dependent
features in carbon nanotubes [44,45]. We consider both
armchair- (AGNR) and zigzag- (ZGNR) edged ribbons, noting
the in-built sublattice asymmetry of ZGNRs due to sites along
one edge belonging to one sublattice. Similar behavior to bulk
graphene is found for AGNRs—namely, reliable electronic
and transport band gaps consistent with an average mass term
model. For ZGNRs, only a suppression of transmission is
found in the expected gap region and it is not accompanied
by a vanishing density of states (DOS). In particular, strong
finite DOS clusters remain along one ZGNR edge. This is
related to the position dependence of simple impurity bound
states near zigzag edges and is captured within a coherent
potential approximation (CPA) model. Finally, we investigate
interfaces between different sublattice domains and predict
that these should give rise to robust one-dimensional metallic
wires embedded within the gapped system, and which should
have features detectable by scanning tunneling microscopy
(STM).

II. MODELS

The electronic structure of graphene is well described by a
nearest-neighbor tight-binding Hamiltonian with a hopping
integral t = −2.7 eV. The use of this model is validated
in the Appendix, where key features from our results are
reproduced using a higher-order model. We take |t | as the unit
of energy and include substitutional N dopants by a change
of on-site energy � = −|t |. More accurate parametrizations
can be achieved [22,46,47], but the qualitative behavior
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described here is reasonably independent of impurity species
or parametrization. We will discuss the change in carrier
density induced by such dopants at the end of Sec. III below.
A general band dispersion is given by

ε±(k) = 1
2 (εA + εB) ± 1

2

√
(εA − εB)2 + 4t2|f (k)|2, (1)

where εA (εB) is the potential on the A (B) sublattice and
f (k) is a term arising from the sum of Bloch phases over
neighboring sites. For pristine graphene, εA = εB = 0.0, and
so ε±(k) = ±t |f (k)|, which is gapless near E = 0. Uniformly
breaking the sublattice symmetry, by setting εA �= εB , has three
effects on the band structure: (i) a band-center shift of εA+εB

2 ,
(ii) a direct band gap of magnitude |εA − εB | at the Dirac
points, and (iii) the breaking of the band linearity due to the
additive constant (εA − εB)2 in the square root. The quantity
|εA−εB |

2 is called a mass term, and the dispersion of electrons
in the gapped systems is no longer linear or massless.

Transport quantities are calculated using recursive Green’s
function (GF) techniques [48]. Semi-infinite leads are con-
structed using an efficient decimation procedure [49] and
the zero-temperature conductance is given by [50] G =
2e2

h
T , where the transmission is calculated from T (E) =

Tr[Gr�RGa�L], where �i(E) (i = L,R) are the level width
matrices and Gr/a(E) is the retarded/advanced Green’s func-
tion of the device region. A configurational average is taken
for disordered systems to discern the overall trends. We also
examine the local density of states (LDOS), which at site i is
given by ρi(EF ) = − 1

π
Im[Gr

ii(EF )]. The GFs required here
involve a double sweep through the device region [48].

Effective medium models are used to analyze the con-
figurationally averaged densities of states. The use of the
two different models below allows one to isolate effects
arising from an average disorder-induced potential or mass
term, and the effects of scattering from individual impurities.
Both models employ a first-nearest-neighbor (1NN) tight-
binding description which is perfectly periodic along the
ribbon direction. On-site energies within the repeated unit
cell are determined as described below. The virtual crystal
approximation (VCA) ignores scattering effects and simply
takes into account the new average potential felt by electrons.
In practice, this is done by introducing a self-energy to shift
on-site energies by c�, where c is the doping concentration
and � is the shift caused by a single dopant [51]. For sublattice
dependent doping, this is generalized so that the self-energy
is sublattice dependent, �x = cx�x for x = A,B, due to cx

(and/or �x) taking different values on each sublattice. This
new unit cell is then considered part of an infinite perfectly
periodic virtual crystal allowing us to calculate the Green’s
function and thus the density of states. The coherent potential
approximation (CPA) replaces this potential with a position
and energy dependent self-energy to include simple scattering
effects. This self-energy is found from the solution of the
self-consistent equation �x = cx�x(1 − (�x − �x)Geff)−1,
where Geff is the Green’s function of the new effective
medium [51,52]. Periodicity of the effective medium along
the ribbon direction can again be used to quickly calculate
the Green’s function and density of states. It can be shown
that the CPA includes simple scattering effects, but neglects
higher-order scattering terms. In this way features appearing

in the CPA, but not the VCA, arise due to the scattering effects
beyond an average potential but below higher-order cluster
effects, such as localization.

III. RESULTS AND DISCUSSION

We first calculate the transmission through both GNR types
for two disorder types—a completely random distribution
of impurities over all sites (symmetric) or a distribution
confined to only one sublattice (asymmetric). Figure 1 shows
transmissions through 101-AGNR (width ∼12 nm) [Fig. 1(a)]
and 100-ZGNR (width ∼21 nm) [Fig. 1(b)] systems. In the
absence of disorder, these ribbons are both metallic within
the nearest-neighbor tight-binding approximation. Results for
the initially semiconducting 100-AGNR are shown in the
Appendix.

The conductance of the pristine systems is shown by
the gray shaded areas and the averaged asymmetrically
(symmetrically) doped systems by solid red (dashed blue)
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FIG. 1. Top: Schematics of a 6-AGNR and 4-ZGNR, with the
unit cells shown by the shaded areas and the A (B) sublattice
sites by open (solid) symbols. The index counts the dimer lines or
zigzag chains across the ribbon. The remaining panels show results
for a 101-AGNR (left) and a 100-ZGNR (right). (a) and (b) show
the (averaged) transmission through pristine systems (gray shading)
and also systems with 40 unit cells of sublattice-asymmetric (solid
red lines) and sublattice-symmetric disorder (blue dashed-dotted
line). (c) and (d) show the numerically averaged DOS of longer
systems with corresponding disorder profiles. (e) and (f) show the
numerically averaged DOS for the fully asymmetric case (black
symbols) compared to VCA (orange) and CPA (green, dashed)
model calculations. The concentration of N atoms for all disordered
cases is 5%.
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lines. Configurational averages over 100 instances of disorder
through device regions 40 unit cells long (17 nm for AGNR,
10 nm for ZGNR) are shown. Impurity concentrations are
cA = 0.05,cB = 0.05 (cA = 0.1,cB = 0.0) for the symmetric
(asymmetric) cases, where cA/B is the concentration on a given
sublattice. Note that the asymmetric case corresponds to a
random replacement of 10% of sublattice A carbon atoms
with nitrogen atoms within the disordered region, for a total
nitrogen concentration of 5% as the B sublattice is unaltered.
The total concentration of nitrogen is thus the same for both
cases.

For AGNRs, asymmetric disorder opens a band gap with
sharp edges on the hole side of the spectrum, in contrast to
symmetric disorder where very little transmission suppression
is seen. The persistence of the T = 1 plateau in the symmetric
case has been observed previously [34]. In general, AGNRs are
more sensitive to edge disorders than the bulk substitutional
disorder considered here [31,41]. The transport gap for
asymmetric doping has a corresponding electronic band gap,
clearly visible in the averaged DOS plot in Fig. 1(c). This
shows an average over the central 800 cells of a disordered
region with a total length of 1000 unit cells. The appearance
of this band gap is consistent with the results for similarly
doped extended graphene sheets [22]. A comparison of the
numerically averaged DOS to results from the VCA and
CPA models is shown for the fully asymmetric case in
Fig. 1(e). Good agreement between the VCA and numerical
results is seen within the gap and on the electron side, while
poor agreement is seen on the hole side. The VCA also
overestimates the band gap, which is somewhat smaller than
the value cA� = 0.1|t | given by a uniform mass term. These
discrepancies are almost entirely corrected by the CPA, where
excellent agreement is seen over the entire energy range.

The accuracy of the VCA at the gap and electron-side
energies suggests that the main effect of disorder here is
not scattering, but rather an averaged potential landscape
with a sublattice dependent mass term. The unimportance of
scattering effects here is also apparent in the transmission
shown in Fig. 1(a), where the asymmetric disorder only
induces minor quenching of transmission at these energies.
Conversely, the failure of the VCA and success of the CPA on
the hole side suggest that scattering plays a more important role
here. This is further evidenced by the hole-side transmission,
which is significantly reduced relative to the pristine case and
has its plateau features almost completely smeared out. This
electron-hole asymmetry is consistent with results in graphene
sheets, where reduced mobility on the hole side is associated
with a pseudospin polarization giving a higher occupation
of the undoped (doped) sublattice on the electron (hole)
side [22]. We have confirmed that this feature is also present
in the AGNR case by examining the sublattice dependent
averaged DOS. The reduced gap size compared to the VCA
prediction is in line with a sublinear gap dependence found
in graphene sheets [18,22]. We have varied the concentration
and find agreement with the EG ∼ c0.75

A scaling previously
reported [22].

The right-hand side panels of Fig. 1 show that many of
the features discussed above are radically altered for zigzag-
edged systems. Transmission suppression is observed in the
gap region for asymmetric doping in Fig. 1(b), but without
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FIG. 2. Transmissions for 101-AGNR (left) and 100-ZGNR
systems with 80 unit cells of asymmetric disorder. Results are shown
for both fully (red, solid) and partially (turquoise, dashed) asymmetric
distributions of impurities.

sharply defined band-gap edges. Furthermore, a significant
DOS is noted throughout the expected band gap [Fig. 1(d)]. It
is thus unsurprising that the VCA [Fig. 1(f)] fails to capture
the DOS features at these energies, since this model always
gives a band gap. However, it does capture the low-energy
electron-side behavior quite well, including the sharp peak at
E = 0. This peak is associated with states localized on the edge
atoms of a ZGNR. It is doubly degenerate in pristine ribbons, as
the states on each ribbon edge, although belonging to opposite
sublattices, are equivalent. Adding a uniform mass term breaks
this degeneracy and the peak splits into two, which reside at
the band-gap edges, at energies corresponding to the on sites
of each sublattice. This is seen for the VCA result, but the
peak at E = −0.1|t |, associated with the N-doped sublattice, is
absent in the numerical results and only the undoped sublattice
peak remains. The CPA once again restores the features absent
within the VCA, suggesting that the finite DOS in the expected
band gap is due to scattering processes dominating over a
gap-opening average potential.

To verify the robustness of the gap-opening feature, we
consider the case of less than perfect sublattice asymmetry.
Figure 2 shows the transmissions through systems analogous
to those in Figs. 1(a) and 1(b), but with 75% of N atoms
on sublattice A and 25% on sublattice B. Curves for a
fully asymmetric case are shown for comparison. For partial
asymmetry, we note a clear band-gap formation for the AGNR
case, whereas transmission suppression without a clear band
gap is still present for the ZGNR case. The AGNR band
gap is shifted away from E = 0, unlike that of the perfectly
asymmetric case, as the band-center shift and mass terms
entering in Eq. (1) are no longer equal. Band-gap formation at
this level of asymmetry is promising for realizing such a gap
experimentally, as samples with over 90% asymmetry have
been reported [11].

To further explore the differences between armchair- and
zigzag-edged geometries, we show LDOS maps for a single,
fully asymmetric disorder configuration of each in Fig. 3. The
maps are taken at an energy in the middle of the expected
band gap. The LDOS decays quickly as we move into the
disordered region of an AGNR. This decay is also uniform
across the ribbon width. For the ZGNR, the LDOS vanishes
throughout most of the system. However, large clusters of
finite density remain along the bottom edge of the ribbon,
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FIG. 3. LDOS maps of a disordered 101-AGNR (top) and 100-
ZGNR (bottom) at E = −0.04|t |. The impurities are entirely on the
A sublattice, corresponding to the bottom edge of the ZGNR, where
a nonvanishing DOS is evident.

which is associated with the doped sublattice. This suggests
an interplay between the doping of a particular sublattice and
the proximity of a zigzag edge of the same sublattice. The
reproduction of averaged DOS features within the CPA model
suggests that this effect can be explained in terms of single
scattering processes, and so we now examine individual N
dopants in a ZGNR.

Figure 4(a) shows a few possible sites for a single N atom
near the edge of a 50-ZGNR. The sites represented by red and
green circles are on the edge sublattice, whereas the blue site is
not. Figures 4(b) and 4(c) show that impurity sites on the edge
sublattice give rise to conductance dips and corresponding
DOS peaks in the low-energy window shown here. These fea-
tures, associated with antiresonances formed by the impurity,
have been studied previously in GNRs [30,41]. Symmetry-
breaking edges result in a strong position dependence of the
antiresonance energies. Interestingly, sites near a ZGNR edge
and of the same sublattice type can give rise to features at
energies within the expected band gap, whereas those on the
opposite sublattice (and sites in AGNRs) result in features at
energies far outside this window. In Figs. 4(d)–4(f) the change
in LDOS near three of these sites is mapped. For Figs. 4(d)
and 4(f), corresponding to sites on the edge sublattice, we
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FIG. 4. The transmission (b) and averaged DOS (c) for a 50-
ZGNR with a single N impurity located at each of the sites shown by
the symbol of the same color in (a). (d)–(f) map the change in LDOS
near the three possible impurity locations, taken at (d) E = −0.05|t |
and (e), (f) E = −0.02|t |.

choose the DOS peak energy and note a significant triangular
region of increased DOS near the impurity locations at the
bottom edge. For the opposite-sublattice impurity site in
Fig. 4(e), we choose the same energy as Fig. 4(f), and note
that no such feature is visible and the DOS barely differs
from that of a pristine ribbon. Consequently, electrons in
this energy range are scattered by impurities located on the
same sublattice as the edge, and not by those on the opposite
sublattice. Returning to asymmetrically disordered ZGNRs,
we can understand the finite DOS in the expected band gap
[Fig. 1(d)] as the average of many single impurity peaks at
different energies and corresponding to A-sublattice impurities
at different locations near the bottom edge. Away from this
edge, the density of states vanishes, as shown in Fig. 3, because
the net effect of the doping here is an average mass term and not
scattering from impurity states. This is confirmed further by
examining the position dependence of the CPA self-energy �A,
which in AGNRs takes a real and quite uniform value slightly
smaller than cA�. This is also true across much of a ZGNR,
except near the edge associated with the doped sublattice,
where �A becomes complex and its real part varies drastically
from cA�. The VCA is unable to explain behavior near this
edge, as the net effect of the doping is no longer an effective
mass term. Increasing the device length will lead to a transport
gap as we enter the localization regime. However, this gap
is unrelated to the effective mass term or a DOS gap, and is
similar to the behavior observed for ZGNRs with symmetric
doping.

The breakdown of the band gap in asymmetrically doped
graphene near a zigzag edge may have interesting conse-
quences beyond GNR devices. Grain boundaries can have
geometries similar to zigzag edges and break the lattice
symmetry in the same manner [25]. Thus CVD-grown systems
may experience leakage near these boundaries. Another
relevant interface is that between neighboring regions with
doping on opposite sublattices. These have been mapped
experimentally [11], and in Fig. 5 we consider an AGNR
with a sublattice interface running parallel to the edge so that
only the A (B) sublattice is doped in the bottom (top) of the
device. Near the boundary the average mass term switches
sign, closing the band gap and resulting in states confined
near the interface [53]. This is confirmed in the LDOS maps
in Fig. 5, shown for systems with both sudden [Fig. 5(a)] and
gradual [Fig. 5(b)] interfaces where the impurity concentration
changes linearly from one sublattice to the other over 4 or
20 atoms, respectively. In both cases we note a large, finite
DOS running along the interface and decaying away from it.
Furthermore, this regions acts as a propagating channel, as is
clear from Fig. 5(c), where a finite transmission is noted across
the band-gap region of a single domain device.

Electron doping by nitrogen impurities shifts the Fermi
energy EF relative to any gap. Accessing the gap region exper-
imentally will involve the application of a gate voltage. While
accurate electron counting can be performed within density
functional theory (DFT) calculations [22] for single impurities
or small disordered regions, this is not feasible for the system
sizes considered here or in experiment. Nonetheless, the
charge density fluctuation can be approximated from δn ∼
ED(cA+cB )ρC

2 , where ED ≈ 0.4 is the average doping efficiency
of nitrogen in GNRs [47] and ρC is the density of lattice sites in
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FIG. 5. LDOS maps of asymmetrically doped 200-AGNRs with
(a) sudden or (b) gradual sublattice interfaces running along the center
of the ribbon, taken at E = −0.04|t |. (c) shows the transmissions for
these systems compared to one with a single domain.

graphene. For cA = 0.1, we find δn ∼ 7.6 × 1013 cm−2, just
inside the range of the most advanced gating methods [54].
cA = 0.02 gives a more realistic δn ∼ 1.5 × 1013 cm−2, while
yielding EG ∼ 50–200 meV. Gaps from lower concentrations,
while too small for applications, still allow experimental
verification of our results. It is also possible to shift EF nearer
the gap by codoping with a symmetrically distributed p dopant,
at the cost of reducing transmission outside the band gap.

IV. CONCLUSIONS

Our results highlight the importance of edge geometry
in doped graphene nanoribbons. The band gap predicted
for sublattice asymmetrically doped graphene is sensitive to
the presence of zigzag edges, where a gap-opening average
potential is no longer the dominant effect of disorder. Instead,
impurity bound states within the expected band gap, associated
with the edge sublattice, lead to a finite DOS and propaga-
tion, albeit scattered, along the edge. A band-gap opening,
similar to that in graphene sheets, is observed for armchair
edges. The sensitivity of gap opening to edge geometry is
relevant beyond ribbon devices. The majority of samples with
sublattice-asymmetric disorder are grown by CVD, which
gives rise to edgelike defects in the form of grain boundaries.
Since these can have zigzag-edge-like symmetries, we expect
similar leakage near grain boundaries in asymmetrically doped
polycrystalline graphene sheets. This may make it difficult
to verify experimentally the band gaps predicted for such
systems. Finally, we show the formation of one-dimensional
metallic wire behavior at the interface between two regions

with doping on opposite sublattices. Such interfaces are
present in experimental systems, and the features we predict
should be observable to STM measurements. These channels
present waveguiding possibilities as, away from defects or
edges, leakage is prevented by the gapped region surrounding
them.
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APPENDIX: COMPARISON OF FIRST- AND
THIRD-NEAREST-NEIGHBOR TIGHT-BINDING RESULTS

To check the validity of the first-nearest-neighbor tight-
binding approximation (1NN) for our systems, we compare
the transmissions of pristine and asymmetrically disordered
nanoribbons calculated with both this model, and with a
more complete third-nearest-neighbor (3NN) description of
graphene. (See Fig. 6.) We also consider a 100-AGNR which
is semiconducting within a 1NN description in the absence
of dopants. The 1NN results are based on the system in
Figs. 1(a) and 1(b), where a constant value of t = −2.7 eV is
used throughout the system to describe the hopping parameter
between nearest-neighbor sites. The 3NN results are calculated
using the same relative second- and third-neighbor hoppings
for pristine graphene as in Ref. [22]. For both models,
we use a simple on-site shift of � = −|t | to represent an
impurity. Larger values of �, suggested elsewhere in the
literature [22,46] for nitrogen, would enhance the features
discussed in this work due to the scaling of the effective mass
term with scatterer strength.
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FIG. 6. Transmissions for pristine (top) and asymmetrically
disordered (bottom) ribbons using both 1NN (solid, black curves) and
3NN (red, dashed curves) models. The 1NN results for the 101-AGNR
and 100-ZGNR are reproduced from the main text, whereas the
100-AGNR case represents an initially semiconducting ribbon within
the 1NN model.
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For AGNRs we note that the 1NN model captures all the
main features, with the exception of the previously reported
small band gap for pristine 101-AGNRs. We also note the
band-gap opening induced by asymmetric disorder occurs
regardless of the metallic or semiconducting nature of the
corresponding pristine ribbon. The higher transmission values
for pristine ZGNRs at low electron-side energies are due

to the zero-energy peak no longer remaining dispersionless
within the 3NN model. This has been reported previously
in the literature [38]. We note that the key result discussed
in our paper, namely, the band-gap opening or transmis-
sion suppression at low hole-side energies in asymmetri-
cally doped systems, are perfectly described by the 1NN
model.
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