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First-principles method for electron-phonon coupling and electron mobility:
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We present density functional theory calculations of the phonon-limited mobility in n-type monolayer graphene,
silicene, and MoS2. The material properties, including the electron-phonon interaction, are calculated from
first principles. We provide a detailed description of the normalized full-band relaxation time approximation
for the linearized Boltzmann transport equation (BTE) that includes inelastic scattering processes. The bulk
electron-phonon coupling is evaluated by a supercell method. The method employed is fully numerical and does
therefore not require a semianalytic treatment of part of the problem and, importantly, it keeps the anisotropy
information stored in the coupling as well as the band structure. In addition, we perform calculations of the
low-field mobility and its dependence on carrier density and temperature to obtain a better understanding of
transport in graphene, silicene, and monolayer MoS2. Unlike graphene, the carriers in silicene show strong
interaction with the out-of-plane modes. We find that graphene has more than an order of magnitude higher
mobility compared to silicene in the limit where the silicene out-of-plane interaction is reduced to zero (by
substrate interaction, clamping, or similar). If the out-of-plane interaction is not actively reduced, the mobility of
silicene will essentially be zero. For MoS2, we obtain several orders of magnitude lower mobilities compared to
graphene in agreement with other recent theoretical results. The simulations illustrate the predictive capabilities
of the newly implemented BTE solver applied in simulation tools based on first-principles and localized basis
sets.
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I. INTRODUCTION

Two-dimensional (2D) materials are promising candidates
for future electronic devices [1–6]. Examples of three such
materials are illustrated in Fig. 1, showing a monolayer of
graphene [Fig. 1(a)], its silicon-based counterpart silicene
[7–10] [Fig. 1(b)], and monolayer MoS2 [Fig. 1(c)]. In such
systems, two dimensionality allows very precise control of
the carrier density by a gate which enables tuning of the
electron-phonon interaction [3]. Electron-phonon interaction
in graphene has been studied previously [11–22], but with the
recent advances in fabrication of devices based on other 2D
materials, like the first demonstration of a silicene transistor
[4], further studies of interaction phenomena in 2D materials
are necessary.

When comparing the electrical performance of devices
one often considers the carrier mobility of the materials.
Mobility is a key parameter for the semiconductor indus-
try describing the motion of electrons when an electric
field is applied. Experiments can approach the “intrinsic”
phonon-limited mobility by several means. One experiment
combines defect-free edge contacting [23] of gate-tunable
graphene electrodes with MoS2 encapsulated in hexagonal
boron nitride layers [24]. Several other experiments screen
the scattering from charged impurities by a high-κ gate
dielectrics [25] or through device suspension in high-κ liquids
[15,26,27]. In general, van der Waals heterostructures may
pave the way for devices with reduced extrinsic scattering,
such as charged impurity scattering, rendering modeling
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of electron-phonon scattering in these devices even more
important.

Conventional mobility modeling usually considers effective
mass approximations [28] in the case of semiconductors or
linear bands for semimetals [11–13] combined with empirical
deformation potentials and semianalytical solutions of the
Boltzmann equation [13,29]. The Boltzmann theory is a useful
approach to model the low-field/linear-response mobility
[29–31], as well as the high-field transport through Monte
Carlo simulations [14,32,33]. Several studies have examined
effects related to screening [34,35], scattering from out-of-
plane vibrations [36], and performed atomistic calculations of
the mobility from tight-binding [37–39] as well as electron-
phonon interaction’s role in facilitating interlayer conduction
[40] and current-induced heating [41,42]. Density functional
theory (DFT) and atomistic methods can be used to assess the
electronic structure and electron-phonon coupling in novel 2D
materials where fitted deformation potential parameters are
not available [43–49].

Recently, several groups have combined DFT with density
functional perturbation theory [43,44,50–52] to evaluate the
mobility from first principles. Parameter-free methods can be
used to address how close experiments are to ideal conduc-
tivities and if further optimization of fabrication techniques
and device designs for novel 2D materials could improve
device performance. In addition, first-principles calculations
of the bulk electron-phonon interaction may be used for
comparing deformation potential values to those obtained from
experiments [53,54] and used to conclude which scattering
effects are dominant. The dominant effect is not always directly
clear from experiments, and published deformation potentials
can vary significantly [13].
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FIG. 1. The monolayered two-dimensional systems that are
considered are (a) graphene, (b) silicene, and (c) MoS2.

Several techniques which differ from contacted electrical
measurements are in development that can provide detailed
knowledge of the electron-phonon interaction; broadening of
Raman peaks [55], kinks in the angle-resolved photoemission
spectra [56], and nondestructive optical methods [57]. Hereby,
a first-principles method to evaluate bulk electron-phonon
interactions may provide useful data for comparison with
experiments.

Methods to obtain the bulk electron-phonon interactions
include Wannier functions together with a generalized Fourier
interpolation scheme [58], perturbation theory and empirical
pseudopotentials [59], finite differences in the projector-
augmented wave method [60], and density functional pertur-
bation theory [50,51,61,62].

We will later give a simple derivation of an expression
for the bulk electron-phonon coupling applicable in any
setup based on localized basis sets. From this we have
implemented a supercell method used to calculate the bulk
electron-phonon interaction employing finite differences. This
method is analogous to that used for calculating the phonon
dispersion both in terms of methodology and computational
cost.

In this paper, we present a detailed description of the imple-
mentation of the bulk electron-phonon coupling, and a Boltz-
mann transport equation (BTE) solver in the Atomistix ToolKit
(ATK) simulation tool [63] We apply atomistic simulations
with ATK to study electron-phonon coupling in 2D materials
from first principles. We formulate a normalized full-band
relaxation time approximation (RTA) for the linearized BTE
that includes inelastic scattering processes. The bulk electron-
phonon methodology employed makes simulations possible
that do not require a semianalytic treatment of part of the
problem and, importantly, we keep the anisotropy information
stored in the coupling as well as the band structure. In addition,
we perform calculations of the low-field mobility and its de-
pendence on carrier density and temperature to obtain a better
understanding of transport in graphene, silicene, and MoS2.

Despite the fact that several papers have presented schemes
for obtaining electron-phonon coupling and mobilities from

first-principles calculations, only few applications exist and
the methods are by no means standard. The focus of our
work is to make an efficient and practical scheme for such
calculations in order to make them as accessible as performing
a band-structure calculation. In the Methods section, we
will discuss the differences in our technical implementation
compared to previous work, and here we only briefly mention
some general advantages of our work which we believe will
be important for the widespread usage. The method is based
on localized basis sets which allow for exploiting locality in
real space and we have made a great effort of optimizing
the implementation and apply efficient parallelization and
interpolation schemes. The method is therefore fast and able
to handle large systems. Second, it is highly accurate and as
we will show in this paper, it gives results consistent with
previous DFT simulations. Finally, it is implemented in a
versatile framework with an easy to use python interface which
allows for performing all the different parts of the calculations
with a single script, thus, it is easy to set up the calculation
and it requires minimal human interference for performing the
calculation.

The paper is organized as follows. In Sec. II, we present
the theoretical and numerical methods used. We derive ex-
pressions for the linearized BTE and the bulk electron-phonon
interaction implemented in the ATK simulation tool. In Sec. III,
we present our results for the bulk electron-phonon coupling
in graphene, silicene, and MoS2. In addition, we discuss
the dependence of the mobility on the carrier density and
temperature for all three materials. Finally, the results are
summarized and discussed in Sec. IV.

II. METHODS

In the diffusive transport limit, the mobility can be obtained
by solving the semiclassical BTE for the electronic distribution
function f (εkn) = fkn:

∂fkn

∂t
+ vkn · ∇rfkn + F

�
· ∇kfkn = ∂fkn

∂t

∣∣∣∣
coll

. (1)

Here, k,n labels the k point and band index, respectively. The
velocity is defined as vkn = 1/�∇kεkn and F = q(E + v × B)
gives the external force. The right-hand side in Eq. (1)
describes different sources of scattering and dissipation that
drives the system towards steady state. In the case of a homo-
geneous system, zero magnetic field, and a time-independent
electric field in the steady-state limit, the BTE simplifies to

qE
�

· ∇kfkn = ∂fkn

∂t

∣∣∣∣
coll

. (2)

Assuming instantaneous, single collisions, which are indepen-
dent of the driving force, the collision integral can be expressed
using transition rates P nn′

kk′ :

∂fkn

∂t

∣∣∣∣
coll

= −
∑
k′n′

[
fkn(1 − fk′n′)P nn′

kk′

− fk′n′ (1 − fkn)P n′n
k′k

]
. (3)

The transition rate due to phonon scattering from a
state |kn〉 to |k′n′〉 is obtained from Fermi’s golden rule
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(FGR):

P nn′
kk′ = 2π

�

∑
q,λ

∣∣gλnn′
kq

∣∣2[
nλ

qδ(εk′n′ − εkn − �ωqλ)δk′,k+q

+ (
nλ

−q + 1
)
δ(εk′n′ − εkn + �ω−qλ)δk′,k−q

]
, (4)

describing absorption (first term) and emission (last term)
of a phonon. The last term includes spontaneous emission
which remains at zero temperature. The sum runs over phonon
momentum (q) and phonon branch index (λ). In Eq. (4), we
have explicitly stated the momentum conservation coming
from the bulk electron-phonon interaction matrix element. We
have implemented a supercell method to calculate the bulk
electron-phonon interaction gλnn′

kq , employing finite differences
in a localized basis set (derived in Sec. II C).

We will assume unperturbed phonons and apply the equi-
librium Bose-Einstein distributions nλ

q = n0,λ
q , in which case

n
0,λ
−q = n0,λ

q since ω−qλ = ωqλ. The transition rates P λnn′
kk′ and

P λn′n
k′k are linked through the “detailed balance equation” [30][

f 0
kn

(
1 − f 0

k′n′
)
P nn′

kk′ − f 0
k′n′

(
1 − f 0

kn

)
P n′n

k′k
] = 0. (5)

Here, f 0 is the equilibrium Fermi distribution function. This
equation secures that ∂fkn

∂t
|
coll

= 0 in equilibrium.
We linearize the BTE in the electric field. The left-hand

side of the BTE, Eq. (2), is approximated to linear order in the
electric field by changing to the equilibrium distribution:

qE
�

· ∇kfkn ≈ qE
�

· ∇kf
0
kn = qE · vkn

∂f 0
kn

∂εkn

. (6)

The right-hand side is linearized by assuming a form of the
distribution function that is linear in the electric field. Defining
a generalized transport relaxation time [30,44] τkn, so that

fkn = f 0
kn + qE · vknτkn

(
− ∂f 0

kn

∂εkn

)
, (7)

and combining and inserting Eqs. (3), (4), (5), (6) in Eq. (2),
we arrive at the linearized BTE

1 =
∑
k′n′

P nn′
kk′

(
1 − f 0

k′n′
)

(
1 − f 0

kn

)
×

[
τkn − τk′n′

nk′n′

nkn

f 0
kn

(
1 − f 0

kn

)
f 0

k′n′
(
1 − f 0

k′n′
)
]
, (8)

where we defined the direction projections nkn = Ê · v̂kn.
Equation (8) is still a full integral equation. However, sev-
eral approximations, termed relaxation time approximations
(RTA), exist throughout literature [43,64,65] to reduce the
problem to a k′-space integration. For instance, the term in
the brackets in Eq. (8) is replaced by τkn times the non-
normalized factors [1 − k·k′

k2 ], [1 − vk′n′ ·vkn

|vkn|2 ] or the normalized

factors [1 − k·k′
kk′ ] and infrequently [1 − vk′n′ ·vkn

|vk′n′ ||vkn| ] [65]. The
non-normalized conditions are related to the assumption that
τk′n′ ≈ τkn while the normalized expressions are related to
the assumption that τk′n′ |vk′n′ | ≈ τkn|vkn|, and in both cases
that the last Fermi factor is equal to unity. The expressions
based on group velocities have the advantage that they do
not depend on the chosen reference k point. In addition,

non-normalized expressions may lead to unphysical negative
momentum relaxation times. Here, we define a normalized
full-band RTA of the linearized BTE, including inelastic
scattering processes, as

1

τkn

=
∑
k′n′

(
1 − f 0

k′n′
)

(
1 − f 0

kn

) [1 − cos(θkk′)]Pnn′
kk′ . (9)

Here, the scattering angle is defined by [66]

cos(θkk′) = nk′n′

nkn

= vk′n′ · vkn

|vk′n′ ||vkn| . (10)

For an angle-independent transition rate then small-angle
scattering, where cos(θkk′) ≈ 1, does not obstruct the flow of
electrons, whereas large-angle scattering, where cos(θkk′) ≈
−1, significantly increases resistivity. However, the selection
rules stored in the bulk electron-phonon coupling matrix
element complicate this general trend. The current density is
related to the average velocity J = qn0〈vkn〉, obtained from
the nonequilibrium distribution function in Eq. (7). From
the transport relaxation time [Eq. (9)], we then evaluate the
low-field electron mobility [64]

μe = −2q

∑
kn∈c |vkn|2 ∂f 0

kn

∂εkn
τkn

n0
, (11)

where a factor of 2 accounts for the spin degeneracy. The hole
mobility is obtained by replacing the electron carrier density
n0 = ∑

kn∈c f 0
kn, and the summation over conduction bands

(c) with the hole carrier density p0 = ∑
kn∈v(1 − f 0

kn), and a
summation over valance bands (v). The total conductivity is
given by σ = qn0μe + qp0μh.

We also mention the difference of the transport scattering
time discussed here versus the lifetime of electronic quasi-
particles. The lifetime can be measured by angle-resolved
photoemission spectroscopy and is evaluated as

1

τ l
kn

= 2π

�

∑
k′qn′λ

∣∣gλnn′
kq

∣∣2

× [(
nλ

q + f 0
k′n′

)
δ(εk′n′ − εkn − �ωqλ)δk′,k+q

+ (
1 + nλ

q − f 0
k′n′

)
δ(εk′n′ − εkn + �ωqλ)δk′,k−q

]
.

Performing the k′ sum, we obtain

1

τ l
kn

= 2π

�

∑
qn′λ

∣∣gλnn′
kq

∣∣2[(
nλ

q + f 0
k+qn′

)
δ(εk+qn′ − εkn − �ωqλ)

+ (
1 + nλ

q − f 0
k−qn′

)
δ(εk−qn′ − εkn + �ωqλ)

]
. (12)

This equation can be derived by keeping only all terms
proportional to fkn in Eq. (3) and corresponds approximately
to neglecting the scattering angle transport factor [1 − cos(θ )]
in Eq. (9) [17,64,67].

A. Numerical details

The full k-dependent scattering rate, in contrast to a simpli-
fied energy-dependent expression, leads to several numerical
complications which have not been addressed in the literature
to the best of our knowledge. Therefore, we will outline
the main technicalities needed to account for the anisotropy
information stored in the full band structure and the electron-
phonon coupling. We represent the delta functions in Eq. (4)
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by Lorentzians δ(ε) ≈ 1
π

γ/2
(γ /2)2+ε2 , with a finite broadening γ .

Consequently, we find that it is important to evaluate the Fermi
factors f 0

k′n′ at the exact final energy, εkn ± �ω as opposed to
εk±qn, to get correct results. This also means that absorption
and emission terms need to be handled independently when it
comes to the peculiar Fermi prefactor in Eq. (9). In addition,
we rewrite the prefactor in the case of absorption, to avoid
numerical instabilities:(

1 − f 0
k′n′

)
(
1 − f 0

kn

) = f 0
kn

f 0
k′n′

1 + nB(εk′n′ − εkn)

nB(εk′n′ − εkn)
. (13)

This secures a stable denominator since absorption will
dominate the low-energy spectrum ε < μF where f 0 → 1
and 1 − f 0 → 0. Considering the k and q grids, a conversion
factor of �q/�k is needed if the k grid and q grid are not
equivalent. One can show that if the two grids are equivalent,
the full linearized BTE [Eq. (8)] simplifies to a linear matrix
equation. However, it is advantageous to allow for different
grid resolutions in order to apply smart choosing of the grids
and resulting simulation speedup. A fine resolution of the
final-state q grid secures a correct result for each k point
even at a rough k grid. Our approach has therefore been to use
fine q grids with the possibility of interpolation to even higher
resolution for all q-dependent variables.

As a final remark, we mention that the velocities vkn,vk′n′

are obtained from perturbation theory. From a change dkα , we
obtain the derivative

dHk

dkα

=
∑

I

iRI,αHνμeik·RI (14)

of the Hamiltonian matrix in a basis of localized orbitals (ν,μ),
and correspondingly for the overlap matrix S by replacing
H → S. Here, I labels the unit cells, with lattice vectors RI ,
of a supercell discussed thoroughly in the next sections. A
perturbation calculation then gives

vkn,α = 1

�

dεkn

dkα

= 1

�
〈nk|dHk

dkα

− εkn

dSk

dkα

|nk〉, (15)

where εkn and |nk〉 are the energy and Bloch state of band n at
wave vector k. We hereby avoid finite-difference errors from
crossing bands when the bands are not sorted correctly.

B. Phonons

The phonon polarization vectors (eλ
q) and energies �ωq,λ

are obtained as solutions to the equation

D(q)eλ
q = ω2

q,λeλ
q, (16)

where q is the phonon momentum and λ labels the phonon
branch (band) index and D(q) is the Fourier transformed dy-
namical matrix. We initially compute the real-space dynamical
matrix from a standard finite-difference approach [68], where
the elements are given by

Diμjν = 1√
MiMj

∂2Etot(R)

∂xiν∂xjμ

≈ 1√
MiMj

Fjμ(+�xiν) − Fjμ(−�xiν)

2�xiν

, (17)

FIG. 2. Schematic illustration of the supercell method. A unit cell
is repeated 5 × 5 times. Only the atoms in the central unit cell are
being displaced, while forces are evaluated on all the atoms in the
supercell. Outside a certain range (ellipsoidal area), the forces are
zero.

where i,j are atom indices and μ,ν denote Cartesian di-
rections. Etot(R) is the total energy written as a function of
all atomic coordinates. A change of variable from first-order
derivative of energy to force was applied in Eq. (17), where the
force Fjμ(+�xiν) is acting on atom j in direction μ when atom
i is displaced by �xiν in direction ν. The approximate equality
sign indicates the approximation inherent in the first-order
finite-difference method.

When computing the forces, we first construct a supercell
by repeating the unit cell (nA,nB,nC) times along the directions
of the primitive lattice vectors. Second, we perform the finite-
difference derivative by calculating the forces in the entire
supercell, while only displacing the atom in the central unit
cell, as schematically shown in Fig. 2.

The normalized phonon eigenmodes in Eq. (16) are dimen-
sionless. The transformation to modes with physical dimension
is uλ

q = lqeλ
q, where the characteristic length is calculated from

the polarization vectors and the diagonal mass matrix m:

lλq =
√

�

2ωλ eλ†
q · m · eλ

q

. (18)

C. Bulk electron-phonon coupling

We here provide a simple derivation of the bulk electron-
phonon coupling in the case of a localized basis by applying
the periodicity of the problem. An equivalent expression was
previously obtained in the Wannier basis method in Ref. [58].
We want to calculate the coupling matrix element between
Bloch states |nk〉 and |n′k′〉 due to a phonon with momentum
q and branch index λ perturbing the Hamiltonian:

gλnn′
kk′q = 〈n′k′|δĤqλ|nk〉. (19)

The perturbation to the Hamiltonian can be expressed as

δĤqλ = lλq

∑
α

∑
I

∂Ĥ

∂xI,α

eλ
q,I,α, (20)

where the I sum runs over the periodic unit cells and the
α sum runs over the spatial degrees of freedom (atom index
and Cartesian direction) within each cell. Using the Bloch
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periodicity of the phonon polarization vector, we can rewrite
this as

δĤqλ = lλq

∑
α

eλ
q,α

∑
I

∂Ĥ

∂xI,α

eiq·RI , (21)

where now eλ
q,α are components of the polarization vector in

the unit cell with index “0” (the reference cell). The unit cell
with index I is displaced from the reference cell by lattice
vector RI .

We evaluate the derivative of the Hamiltonian in a similar
manner as the dynamical matrix described above. A unit cell
is repeated to form a supercell, but only the atoms in the
central unit cell are displaced. The terms that contribute to
the derivative are the (local) effective potential Vlocal(r) and
the nonlocal (NL) Kleinmann-Bylander term VNL. Details
of the derivative of the Hamiltonian are given in Appendix.

The electronic Bloch states are expressed as

|nk〉 = 1√
N

∑
I

∑
μ

c
μ

n,ke
ik·r|φμ; RI 〉, (22)

where the I sum runs over N unit cells in the macroscopic
system, μ labels the basis orbitals within a single unit cell,
c
μ

n,k are expansion coefficients, and |φμ; RI 〉 is the μth basis
orbital in the unit cell displaced from the reference cell by the
lattice vector RI . Inserting (21) and (22) in (19) we get

gλnn′
kk′q = lλq

N

∑
IJK

∑
μν

∑
α

e−ik′ ·RJ eik·RK
(
cν
n′,k′

)∗
c
μ

n,k

× eλ
q,α〈φν ; RJ | ∂Ĥ

∂xI,α

eiq·RI |φμ; RK〉. (23)

Due to the periodicity of the system, the derivative of the
Hamiltonian matrix with respect to atom positions in RI can
be shifted as follows:

〈φν ; RI + Rm| ∂Ĥ

∂xI,α

|φμ; RI + Rl〉 = 〈φν ; Rm| ∂Ĥ

∂x0,α

|φμ; Rl〉,

where we defined the relative vectors Rm/l connecting cell K,J

to the cell I . As for the force derivative calculation described in
Sec. II B, the derivative of the Hamiltonian will also be nonzero
in a region around the atoms being displaced. The J,K sums
in Eq. (23) which run over all cells in the macroscopic sample
can be limited to the cells included in the supercell calculation
of the ∂Ĥ/∂x0,α . We thus replace the J,K sums with sums
over neighboring cells m,l relative to I in Eq. (23):

gλnn′
kk′q = lλq

N

∑
Iml

∑
μν

∑
α

e−ik′ ·(RI +Rm)eik·(RI +Rl )eiq·RI

× (
cν
n′,k′

)∗
c
μ

n,keλ
q,α〈φν ; Rm| ∂Ĥ

∂x0,α

|φμ; Rl〉, (24)

where the derivative of the Hamiltonian is only carried out
for spatial degrees of freedom (α) in the reference unit cell.
The I sum can now be carried out to simply give a factor
of

∑
I ei(k−k′+q)·RI = N δk′,k+q which enforces momentum

conservation. Defining gλnn′
kk′q = gλnn′

kq δk′,k+q, Eq. (24) is then
simplified to the final expression for the bulk electron-phonon

coupling in a supercell setup:

gλnn′
kq = lλq

∑
ml

∑
μν

∑
α

eik·Rl−i(k+q)·Rm
(
cν
n′,k+q

)∗
c
μ

n,k

× eλ
q,α〈φν ; Rm| ∂Ĥ

∂x0,α

|φμ; Rl〉. (25)

In summary, Eq. (25) provides a procedure for calculating
the bulk electron-phonon coupling in any localized basis
setup: One has to evaluate the finite differences of a supercell
Hamiltonian where atoms in the center cell are displaced and
a summation over unit cells is performed with corresponding
phase factors [69].

III. SIMULATIONS AND RESULTS

The simulations were performed using the ATK DFT code
with the PBE-GGA functional for exchange correlation in the
cases of graphene and silicene, and LDA in the case of MoS2.
In all cases, we use a double-zeta-polarized (DZP) basis set.
The real-space grid cutoff was 110 Ha. The geometries were
relaxed until all forces were smaller than 0.001 eV/Å, and
51 × 51 in-plane k points were used in the electronic-structure
calculations. A vacuum gap of 30 Å was used in the direction
normal to the material plane and Dirichlet boundary conditions
was used in the Poisson equation for this direction. The
bulk electron-phonon interaction and phonon dispersion was
obtained from a 11 × 11 supercell calculation in the case of
graphene and a 9 × 9 supercell for silicene and MoS2. The
delta functions in Eq. (4) were numerically represented by
Lorentzians with a broadening of γ = 3 meV.

A. Band structures

One obtains linear valence and conduction bands near the
Dirac point K in both graphene and silicene, as shown by
the band structures in Fig. 3(a). We obtain Fermi velocities of
0.9 × 106 m/s and 0.57 × 106 m/s of graphene and silicene,
respectively. Both materials have six phonon branches. The
three acoustic modes will dominate the low-temperature scat-
tering where two modes (LA, TA) have a linear q dependence
and the third out-of-plane acoustic (ZA) mode has a q2

dependence near the Brillouin zone center [70] [see Fig. 3(b)].
We obtain sound velocities of 20.4 (12.6) × 103 m/s for the
LA (TA) mode of graphene and 9.1 (6.1) × 103 m/s for
the LA (TA) mode of silicene. MoS2 is found to be a
direct-gap semiconductor [71,72] with a band gap of 1.89 eV
[see Fig. 3(c)]. The electron and phonon band structures, in
Figs. 3(c) and 3(d), are consistent with previous theoretical
results [60]. MoS2 has three acoustic and six optical branches.
The three acoustic branches are the in-plane longitudinal
acoustic (LA), the transverse acoustic (TA), as well as the
out-of-plane acoustic (ZA) modes. We obtain sound velocities
of 6.6 (4.2) × 103 m/s for the LA (TA) mode of MoS2. The six
optical branches are two in-plane longitudinal optical (LO1,
LO2), two in-plane transverse optical (TO1, TO2), and two
out-of-plane optical (ZO1, ZO2) modes. The two lowest optical
branches (LO1, TO1) are nonpolar modes which do not couple
to the charge carriers. The next two branches (LO2, TO2) are
polar optical modes where the Mo and S atoms vibrate in
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FIG. 3. Electron band structure of (a) graphene and silicene and (c) MoS2 and phonon dispersion of (b) graphene and silicene and (d) MoS2.

counterphase. The dispersionless out-of-plane mode ZO2 is
also called the homopolar mode. It is characteristic of layered
structures and is related to fluctuations in the layer thickness
[73]. For further discussion of phonon modes in MoS2, we
refer the reader to Refs. [74,75].

B. Bulk electron-phonon coupling

We now turn to the calculated bulk electron-phonon
coupling. It is common practice to plot the coupling matrix
element gλnn′

kq in Eq. (25), for a fixed k point as a function of q.
In this way, one can visualize the detailed suppression of the
scattering, as opposed to a constant or linear-in-q deformation
potential, depending on the symmetry of the involved phonon
and electron states. The units are converted to eV/Å, often
used for extracted deformation potentials from experiments,
by dividing by the characteristic length prefactor lλq in Eq. (25).

In Fig. 4, we illustrate the q variation of the bulk electron-
phonon interaction obtained for the four modes coupling with
electrons in graphene. The atomic motion of the considered
mode is illustrated as an insert in the upper right corner, by
arrows indicating the atomic displacement. The interaction is

obtained around 300 meV from the Dirac K point. Comparing
the interaction with two previously published results [17,43],
we find that it is slightly higher for the acoustic modes
(between 10%–20%) and very close in magnitude for the
optical modes (within 10%), but in both cases with the
same symmetry. The maximal values for the TO and LO
modes are in energy units approximately 0.4–0.5 eV for
comparison. Importantly, we see that the coupling elements
are highly anisotropic. In the case of acoustic modes, we
see that backscattering (qx < 0, qy ≈ 0) is suppressed for the
LA mode, while the situation is reversed for the TA mode
where forward scattering is suppressed. In addition, other
directions with complete suppression also appear and the q

dependence is highly nontrivial. In general, the anisotropy and
scattering suppression of the bulk electron-phonon coupling
is determined by the combined symmetry of both phonon and
electronic states.

Unlike graphene, the carriers in silicene display a strong
interaction with the ZA mode [47] (see Fig. 5). This is
related to the buckling of the silicene sheet, where one
basis atom is displaced approximately 0.44 Å out of plane,
hence breaking the planar symmetry. Otherwise, we see that

035414-6



FIRST-PRINCIPLES METHOD FOR ELECTRON-PHONON . . . PHYSICAL REVIEW B 93, 035414 (2016)

FIG. 4. Bulk electron-phonon coupling in graphene for the four modes with nonzero coupling. The interaction is illustrated as a function
of phonon q vector at a k point shifted 300 meV from the Dirac K point towards the � point. We refer the reader to Ref. [17] for a detailed
discussion of the interpretation of the plots for the TA and LA modes. The scattering rate is obtained as integrals around the constant energy
circles on the Dirac cone satisfying εk′ = εk ± �ω [cf. Eqs. (4) and (9)]. Insets: phonon modes are visualized by arrows indicating the atomic
displacements.

the situation for the acoustic modes is similar to that of
graphene. Backscattering is suppressed for the LA mode,
while the situation is reversed for the TA mode where forward
scattering is suppressed. Again, other directions with complete
suppression of the scattering also appear.

It is important to realize that the reduction of the symmetry
of the lattice leads to additional scattering mechanisms and
modes interacting with the charge carriers. This was the case
for silicene where there was no planar symmetry, and it is
even more so for the case of MoS2 which lacks inversion
symmetry. In the last mentioned case, all kinds of electron-
phonon coupling may take place, such as different orders of
deformation potential, piezoelectric and Fröhlich couplings.
This makes a strong case for a fully numerical solution of
the BTE together with a first-principles method to evaluate
the bulk electron-phonon interactions. We avoid having a high
number of free parameters in an analytical model and instead
every type of interaction is directly taken care of. In Fig. 6, we
show the bulk electron-phonon interaction obtained for the five
modes coupling with electrons in MoS2. Unlike graphene and
silicene, which are semimetals, MoS2 is a semiconductor and
the interaction is evaluated at the conduction band minimum
since only n doping is relevant in MoS2. Again, we find very
anisotropic couplings where the symmetry compares well to
previously published results [60].

The coupling with the TA, LA, and TO modes is of the
same order of magnitude as in Ref. [60] [cf. Figs. 6(a)–6(c)],

but we obtain a somewhat lower coupling for the homopolar
mode (approximately 65% lower) [see Fig. 6(d)]. Figure 6(e)
shows the Fröhlich interaction for the polar optical LO2

mode. The Fröhlich interaction is difficult to converge with
respect to supercell size. In the long-wavelength limit, this
element should increase linearly [60,73]. We find that the peaks
increase in magnitude by approximately 4% and move toward
|q| → 0 as expected if the supercell size is increased from
9 × 9 to 15 × 15. Therefore, this interaction is only partially
accounted for, except for the low-temperature limit where
the optical LO2 mode is not occupied. Several recent papers
propose methods for evaluating the long-range couplings from
DFT by using Born effective charges [76,77], which relies
on a partitioning into long- and short-ranged interactions. It
should be mentioned that long-ranged couplings related to
macroscopic E fields has to be screened separately in a similar
partitioning scheme to account for the additional screening
imposed by the surrounding dielectric encapsulation used for
2D materials to screen charged impurities.

C. Scattering rates

We obtain the scattering rate by integrating the linearized
BTE within the RTA [cf. Eq. (9)]. The electron-phonon
coupling is evaluated for every k point up to an energy
cutoff in a 100 × 100 q mesh. The coupling, energies, and
velocities were subsequently interpolated to twice this q-space

035414-7



GUNST, MARKUSSEN, STOKBRO, AND BRANDBYGE PHYSICAL REVIEW B 93, 035414 (2016)

FIG. 5. Bulk electron-phonon coupling in silicene. Unlike graphene also the out-of-plane modes (ZA, ZO) couple significantly with
electrons. The interaction is illustrated as a function of phonon q vector at a k point shifted 110 meV from the Dirac K point towards the �

point. The scattering rate is obtained as integrals around the constant energy circles on the Dirac cone satisfying εk′ = εk ± �ω [cf. Eqs. (4)
and (9)]. Insets: phonon modes are visualized by arrows indicating the atomic displacements.

resolution before the BTE was solved. In Fig. 7, we show
the result obtained for graphene. Below the Bloch-Grüneisen
temperature (approximate 57

√
n K for graphene with the

carrier density measured in units of 1012 cm−2), only those
phonons with short q are effectively excited. This manifest
itself in the dip in the scattering rate around the Fermi level.
We clearly see the expected low-temperature Bloch-Grüneisen
dips around the Fermi level (100 meV in the present case)
and the opening of optical phonon interaction (emission)
at μF + �ω [Fig. 7(a)]. It is illustrative to plot the rate
along a single k line as in Fig. 7(a). However, the full
two-dimensional dependency is needed to capture the
anisotropy of the scattering rate. Figure 7(b) illustrates the
scattering rate and inverse lifetime of the LA and TA modes
found in a full two-dimensional k mesh. The spread of the

points illustrates a significant dependence on directions of
the scattering rate. This is further highlighted in Figs. 7(c)
and 7(d) where the scattering rate was interpolated to clearly
illustrate the anisotropy of especially the LA and TA modes.
Part of the anisotropy originates from the bulk electron-phonon
coupling. This is the main contribution to the anisotropy of the
inverse lifetime. However, the anisotropy is further amplified
by the transport scattering angle 1 − cos(θ ) in Eq. (9), which
is seen by comparing scattering rate and inverse lifetime in
Fig. 7(b).

We conclude that the scattering rate depends significantly
on the k-space directions. In addition, our implementation
gives results for the graphene scattering rate that are consis-
tent with previous theoretical results in the low-temperature
Bloch-Grüneisen regime, as well as the high-temperature
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FIG. 6. Bulk electron-phonon coupling in MoS2. The interaction is illustrated as a function of phonon q vector at the conduction band
minimum K point. Insets: phonon modes are visualized by arrows indicating the atomic displacements.

equipartition regime where the scattering rate should depend
linearly on energy [13,60].

Previous studies have calculated the lifetime of carriers in
silicene [47]. In Fig. 8, we show the scattering rate along
a single k line for silicene and MoS2. We find a significant
scattering with the ZA mode for silicene. Surprisingly, the
scattering rate with the ZA mode is two to three orders of
magnitude larger than the coupling with the remaining modes.
This was not captured in the previous study in Ref. [47] due
to a linear dispersion model applied for the quadratic ZA
mode. However, this mode is difficult to describe accurately.
The electron-phonon interaction is only partly screened in
the present formalism and the quadratic dispersion of the
ZA modes results in a constant density of states which is
therefore not able to cut off long-wavelength interactions. One
could hope that the scattering rate with the out-of-plane ZA
mode would be significantly reduced due to interaction with

a substrate and a more precise description of screening. The
origin of the strong ZA coupling was very recently shown by
Fischetti et al. [78] to be quite general for materials with broken
planar symmetry and lies in the divergence of the thermal
population of the flexural ZA phonons. In that paper, they also
discuss how screening and reasonable long-wavelength cutoffs
introduced by disorder will not be sufficient to reduce the
coupling with the ZA mode. However, it is still interesting to
compare the obtained value with and without the ZA coupling
to illustrate the maximal gain by clamping of the sample.
The obtained mobilities should in any case be taken as upper
limits.

For both silicene and MoS2, we find that the rates only
change slightly if the Fermi level is reduced further. For
MoS2 the scattering rate is almost independent of μF for
μF < Ec; only the scattering rates for the LO2 and LA modes
reduce slightly at high energy. Unlike the scattering related
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FIG. 7. Scattering rate as a function of energy/k for graphene. (a) At a temperature of 5.7 K and a Fermi level μF = 100 meV along the
k points from K to � up to 0.5 eV. (b) Comparison of the anisotropy in the scattering rate and inverse lifetime at a temperature of 300 K and
a Fermi level μF = 100 meV. (c), (d) Two-dimensional scattering rate for the highly anisotropic TA and LA phonon modes. The k points are
relative to the Dirac point K and the temperature is 300 K and Fermi level μF = 100 meV. The points illustrate the original mesh up to 0.5 eV
and the contours are obtained from cubic spline interpolation.

FIG. 8. Scattering rate as a function of energy/k for silicene
(a) and MoS2 (b) relative to the conduction band minimum Ec. In
both cases, the temperature is 300 K. The Fermi level is tuned to
μF = 100 meV for silicene and 500 meV below the conduction band
minimum for MoS2. We used k points along a line from K to � up
to 0.5 eV for silicene and K to M for MoS2.

to microscopic changes in potential (deformation potential
or nonpolar optical scattering), the scattering related to the
macroscopic electric field (piezoelectric or Fröhlich interac-
tion) will be partially screened by a dielectric environment.
One approach to handle this difference in screening is to
partition electron-phonon interaction in real space into the
short-ranged deformation potential contributions and long-
ranged piezoelectric and Fröhlich interactions and apply the
screening individually [54]. However, as shown in Fig. 8(b),
the Fröhlich interaction (LO2 mode) is not dominating the
transport and the piezoelectric coupling is most important at
low temperatures [30,60].

D. Mobility

In Fig. 9, we illustrate the obtained carrier concentration
and mobility [79] of graphene, silicene [Figs. 9(a) and 9(b)],
and MoS2 [Figs. 9(c) and 9(d)]. We only include intravalley
scattering in the present analysis. The same q mesh is used as
for the scattering rate analysis. For the k space we evaluate the
scattering rate in the k points that contribute, from a very dense
1500 × 1500 Monkhorst-Pack sampling of the first Brillouin
zone, up to a given Fermi level/carrier density. As an example,
the resulting k points are illustrated by markers in Fig. 7 in
the case of graphene. The resulting number of k points treated
within the valley is 316, 378, and 514 for graphene, silicene,
and MoS2, respectively.

The phonon-scattering-limited mobilities calculated here
show that graphene can have a mobility close to 106 cm2/V s
at 100 K and a carrier density of 3 × 1011 cm−2 (cf. Fig. 9). At
300 K, we obtain a mobility decreasing from 145 000 cm2/V s
at a carrier density of 1 × 1012 cm−2 to 55 000 cm2/V s at a

035414-10



FIRST-PRINCIPLES METHOD FOR ELECTRON-PHONON . . . PHYSICAL REVIEW B 93, 035414 (2016)

FIG. 9. Carrier concentration as a function of Fermi level for graphene and silicene (a) and MoS2 (c). The conduction band edge of MoS2

is at 0.95 eV. The mobility as a function of carrier density is also shown for graphene (b) and silicene (b, inset) and MoS2 (d).

carrier density of 3 × 1012 cm−2. In comparison, experiments
have so far achieved room-temperature values decreasing from
roughly 90 000 cm2/V s to 45 000 cm2/V s at the same carrier
densities [23]. The same experiment also obtains mobilities
up to 106 cm2/V s at lower temperatures. In addition, we find
the mobility of silicene to be more than an order of magnitude
lower than graphene but still very high if the ZA coupling can
be reduced to zero by clamping or other means. We obtain
a mobility of roughly 2100 cm2/V s at 300 K and a carrier
density of 3 × 1012 cm−2. Previous calculations have only
considered ungated silicene while neglecting the ZA coupling
and obtained values in the range of 10–1000 cm2/V s at 300 K
[47,80]. However, if the ZA coupling cannot be reduced, we
find that the mobility will be two to three orders of magnitude
lower depending on the carrier density. Specifically, we obtain
values of 10 cm2/V s (4 cm2/V s) at a temperature of 300 K
(100 K) and a carrier density of 3 × 1012 cm−2. These findings
strongly support the general conclusions made in Ref. [78].
The only experiment on silicene presently published achieves
a mobility of roughly 100 cm2/V s at 300 K [4]. For MoS2, our
calculated mobility decreases from a value of 1700 cm2/V s at
100 K to approximately 400 cm2/V s at 300 K. These results
are in good agreement with published first-principles simu-
lations and experimental values [51,60,62]. In comparison,
experiments have achieved up to 200 cm2/V s at 300 K [25].

We note that the electron-phonon coupling as a function
of q, as was shown for all materials for a single k point,
was evaluated at all k points in the mobility calculations in
Fig. 9. Another approach that is often applied is to evaluate the
scattering rate along a single k line obtained from a |gλnn′

kq |
at a fixed k point. This can be transformed to a generic
energy dependence which is used to evaluate the mobility. This
approach, however, neglects part of the anisotropy in the bulk
electron-phonon coupling, which was included in the present
results.

E. Intervalley scattering

We only included intravalley scattering in the previous fig-
ures. However, it is straightforward to evaluate the intervalley
scattering rate separately by doing a calculation with the same
k mesh and shifting the q mesh to q + K. We have done so
for all three materials along a single k line to evaluate at what
temperatures and carrier densities the intervalley scattering
might start contributing.

In Fig. 10, we compare the obtained intravalley and
intervalley scattering rates summed over all modes, except the
intravalley ZA mode as discussed previously. For graphene,
we find that intervalley scattering starts contributing around
200–300 K and at a Fermi level above 140 meV, correspond-
ing to a carrier density of n0 ≈ 1012 cm−2 [cf. Fig. 9(a)].
The reason is that intervalley scattering requires a phonon
momentum connecting the two valleys |q| ≈ |K − K′| ≈ |K|
where the lowest-energy phonon modes (ZA and ZO around

FIG. 10. Scattering rate as a function of energy/k for graphene,
silicene, and MoS2 relative to the conduction band minimum Ec. In
all cases, the temperature is 300 K. The Fermi level and k route are
the same as for the intravalley scattering rates presented in Figs. 7(b)
and 8.
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q = K) only exist above 65 meV in the case of graphene
[cf. Fig. 3(b)]. A similar onset exists for silicene and MoS2

where we at 300 K find from Fig. 10 that intervalley scattering
starts contributing at a Fermi level of 30 and 100 meV above
the conduction band minimum, respectively. For MoS2, this
corresponds to n0 ≈ 1014 cm−2 so that intervalley scattering
does not contribute significantly, whereas for silicene interval-
ley scattering seems to make a significant contribution above
n0 ≈ 0.5 × 1012 cm−2.

Our definition of the onset for intervalley contribution
is that we obtain an intervalley scattering rate of the same
order of magnitude as for the intravalley scattering. Using
Matthiessen’s rule 1/μ = 1/μintra + 1/μinter we can estimate
that the total mobility will decrease by approximately a
factor of 2 at carrier densities above n0 ≈ 1012 cm−2 if
intervalley scattering was included for graphene. For MoS2,
the contribution will be much smaller at assessable carrier
densities, whereas silicene in the limit without intravalley ZA
coupling can have as much as an order of magnitude lower
mobility due to intervalley scattering for carrier densities above
n0 ≈ 0.5 × 1012 cm−2.

IV. CONCLUSION

In summary, we have presented a Boltzmann transport
equation (BTE) solver implemented in the Atomistix ToolKit
(ATK) simulation tool. The method allows for calculation of
material properties, including the electron-phonon interaction,
from first principles. We have applied the tool to calculate
the phonon-limited mobility in n-type monolayer graphene,
silicene, and MoS2. Our results compare well to published
theoretical results and experiments for MoS2 and graphene
and extend previous theoretical calculations for silicene, where
a significantly lower mobility than previously reported is
obtained due to a strong coupling with the flexural (ZA)
mode, that was so far neglected. The bulk electron-phonon
coupling is highly anisotropic due to scattering suppression in
different q directions, as well as a nontrivial q dependence,
related to the combined symmetry of the electron and phonon
states. The simulations provide an upper bound for the electron
mobilities of the selected 2D materials. The ab initio approach
demonstrated in this paper can be directly applied to other
materials in 1D, 2D, and 3D larger nanostructures and may
be straightforwardly extended to study cases with electron-
impurity scattering. In addition, we have illustrated how the
reduction of the lattice symmetry, when going from graphene
to silicene with no planar symmetry and further on to MoS2

with no inversion symmetry, leads to additional scattering
mechanisms and modes interacting with the charge carriers.
This makes a strong case for the need of a fully numerical
solution of the BTE together with a first-principles method
to evaluate the bulk electron-phonon interaction, especially,
when going to systems with many modes, such as systems
with low lattice symmetry, slab structures, and nanostructured
materials.
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APPENDIX: FINITE-DIFFERENCE DERIVATIVE
OF HAMILTONIAN

The derivative of the Hamiltonian operator is calculated in
a way similar to the dynamical matrix following the approach
of Kaasbjerg et al. [60]. We construct a supercell by repeating
the primitive configuration a number of times in each periodic
direction. Subsequently, we displace the atoms in the central
cell by ±δ in all Cartesian directions (forward and backward)
and calculate the derivative with respect to, e.g., atom i in the
x direction as

∂Ĥ

∂xi

≈ Ĥ (xi + δ) − Ĥ (xi − δ)

2δ
, (A1)

where Ĥ (xi + δ) indicates the Hamiltonian operator obtained
for the configuration where atom i is displaced by δ in
the positive x direction. Note that Eq. (A1) applies for the
Hamiltonian operator, and not for the Hamiltonian matrix
expressed in a basis of LCAO basis functions. In the latter
case it is necessary to correct also for the displacement of the
basis orbitals [68].

The Hamiltonian operator has several terms:

Ĥ = T̂ + V̂local + V̂NL , (A2)

where T̂ is the kinetic energy operator, V̂local is the local
potential including the exchange-correlation potential, the
Hartree potential, as well as the local pseudopotential, while
V̂NL is the nonlocal Kleinman-Bylander pseudopotential. Since
the kinetic energy does not depend on the atomic coordinates,
the derivative of that is zero. The derivative of the local
potential can be directly evaluated using Eq. (A1). The
nonlocal potential is written as

V̂NL =
∑

i

∑
αβ

∣∣χi
α

〉
vi

αβ

〈
χi

β

∣∣, (A3)

where |χi
α〉 is a projector function centered on atom i and

vi
αβ are (fixed) projector coupling elements. The derivative is

written as

∂V̂NL

∂xj

= ∂

∂xj

∑
i

∑
αβ

∣∣χi
α

〉
vαβ

〈
χi

β

∣∣

=
∑
αβ

(
∂
∣∣χj

α

〉
∂xj

vαβ

〈
χ

j

β

∣∣ + ∣∣χj
α

〉
vαβ

∂
〈
χ

j

β

∣∣
∂xj

)
. (A4)

The derivatives of the projector functions are evaluated
numerically as in Eq. (A1).

Having calculated the derivative of the Hamiltonian opera-
tor we evaluate the derivative in the LCAO basis(

∂H
∂xi

)
μν

= 〈φμ|∂Ĥ

∂xi

|φν〉. (A5)
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[41] T. Gunst, J.-T. Lü, P. Hedegård, and M. Brandbyge, Phys. Rev.

B 88, 161401 (2013).
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