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Inelastic vibrational signals in electron transport across graphene nanoconstrictions

Tue Gunst,1,* Troels Markussen,2 Kurt Stokbro,2 and Mads Brandbyge1

1Department of Micro- and Nanotechnology (DTU Nanotech), Center for Nanostructured Graphene (CNG), Technical University of
Denmark, DK-2800 Kgs. Lyngby, Denmark

2QuantumWise A/S, Fruebjergvej 3, Postbox 4, DK-2100 Copenhagen, Denmark
(Received 12 April 2016; revised manuscript received 1 June 2016; published 16 June 2016)

We present calculations of the inelastic vibrational signals in the electrical current through a graphene
nanoconstriction. We find that the inelastic signals are only present when the Fermi-level position is tuned to
electron transmission resonances, thus, providing a fingerprint which can link an electron transmission resonance
to originate from the nanoconstriction. The calculations are based on a novel first-principles method which
includes the phonon broadening due to coupling with phonons in the electrodes. We find that the signals are
modified due to the strong coupling to the electrodes, however, still remain as robust fingerprints of the vibrations
in the nanoconstriction. We investigate the effect of including the full self-consistent potential drop due to finite
bias and gate doping on the calculations and find this to be of minor importance.
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I. INTRODUCTION

Graphene is foreseen to become a versatile material
with a wide range of applications in nanoelectronics
[1–3]. Much research addresses the phonon-limited electron
mobility of pristine devices [4,5]. However, the properties
related to electron-phonon coupling in nanoscale devices
based on nanostructured graphene has received much less
attention [6,7]. Nanostructuring of graphene may play a key
role in making graphene applicable in electronics since it
provides a direct way for tuning the band gap [8,9], guiding
electrons [10–12], as well as tuning the thermal proper-
ties [13–16]. Graphene nanoconstrictions (GNCs) are a generic
example of nanostructured graphene that is used for semi-
conducting interconnects in graphene nanocircuitry [17,18]
and may become a central building block of graphene-based
nanoelectronics. State-of-the-art experiments have “sculpted”
monolayer graphene with close to atomic precision down
to a width of a few benzene rings [19,20]. In addition, a
recent experiment indicates how one can control both width
and edge morphology of nanoribbons through advances in
bottom-up fabrication [21]. With the emergence of nanosized
constrictions the current density can locally be very high, and
it is important to address the coupling between current and
localized vibrations in the device [7].

Recently, several papers have examined inelastic signals
due to vibrational excitations in the second derivative of
the current-voltage characteristics, so-called inelastic electron
transport spectroscopy (IETS), of gated pristine graphene
[22–27], and heterostructures of graphene and hexagonal
boron nitride [28,29]. With the rapid development in fab-
rication and electronic characterization of nanostructured
graphene [19,20,30] it is interesting to investigate the presence
of inelastic vibrational signals for GNCs.

Carbon nanosystems, unlike metallic contacts, have elec-
tronic states that vary on the energy scale of the vibrational
frequencies necessitating calculations which go beyond the
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otherwise successful wideband approximated lowest-order
expansion (LOE-WBA) [31–33]. In the LOE-WBA one
assumes a constant/energy-independent electronic structure
and evaluates all electronic parameters at the Fermi level.
However, phonon frequencies in graphene-based devices can
approach 0.2 eV on which scale the electronic structure is
varying significantly. Hereby it is important to encompass the
difference in the electronic states before and after scattering
from a vibration. We have recently developed an extended
lowest order expansion (LOE) method that can include the
rapid variation near resonances in the electronic spectrum
with energy in IETS modeling [34]. This method enables
studies of IETS on gated graphene nanostructures. IETS was
originally developed to probe molecules on surfaces with
scanning tunneling microscopy that are weakly bound to the
leads [35] therefore possessing a set of localized vibrations.
In the case of nanostructured graphene the vibrations of the
device are strongly coupled with phonons in both leads, and
the resulting lifetime broadening needs to be included in a
predictive description of the inelastic transport signals [36,37].
The so-called propensity rules, approximate selection rules
related to the symmetry of vibrational modes and electronic
states of the junction, explain why only a few of many
possible vibrational modes yield an inelastic signal [38–41].
The lifetime broadening could be severe and therefore needs
to be considered in strong-coupled devices.

In this paper, we apply the extended LOE method [34]
to describe the inelastic vibrational signals in the current
for a GNC near an electronic resonance in the constriction.
Contrary to, e.g., molecules coupled to metal electrodes [34],
the main vibrational modes in the GNC have behavior and
frequencies similar to those in the electrodes and are not merely
localized in the junction. Therefore it is of special importance
to include the coupling of these to the electrode phonons in
the graphene leads and in particular take the damping due to
this coupling into account in the IETS. We show how the IETS
signals are broadened by this coupling which in turn gives
rise to an additional selection of signals that can show up.
The simulations are performed with density functional theory
(DFT) and nonequilibrium Green’s functions (DFT-NEGFs)
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packages [42–45] in combination with INELASTICA [44]. In
addition, we have implemented both the LOE-WBA and
the LOE methods in the ATOMIX TOOLKIT (ATK) simulation
tool [46] to be able to compare the two methods. We find
consistent results with both INELASTICA and ATK which
strengthens the reproducibility of the results. We identify a
number of inelastic vibrational signals in the current which
persists including the strong coupling to electrode phonons in
the GNC. We furthermore determine the impact on the IETS
signals of finite bias and charge doping due to gate electrodes
in the self-consistent calculation of the Hamiltonian.

II. SYSTEM AND METHOD

We consider the GNC system illustrated in Fig. 1(a) where
the current is passed through a short ribbon [21,47–49] at
the narrowest point that connects two graphene electrodes.
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FIG. 1. System and transmission for a nanostructured graphene
device. (a) Graphene nanoconstriction with a high current density
at the narrow ribbon connecting two graphene electrodes. The
transmission eigenchannel at the μF ≈ 0.6 eV is plotted on top of the
configuration indicating the path of the current. The electron-phonon
coupling is evaluated within the constriction where the current
density is large. (b) Transmission across the device showing several
resonances with a full width at half maximum (FWHM) lower
than typical phonon frequencies. On- (off-) resonance positions are
indicated by full (dashed) arrows. (c) Phonon density of states (DOS)
comparing the result from full NEGF with the friction approximation.

Looking at the transmission probability for an electron to
cross the device, Fig. 1(b), we find that several electronic
resonances are present due to the diffraction barrier at abrupt
interfaces in graphene [12,50]. This diffraction barrier height
is controlled by the width of the constriction. Making the
constriction longer will move the peaks down in energy while
maintaining the overall features. Here we choose a length
where inelastic calculations are computationally heavy but
still feasible. A gate electrode can be used to control the
Fermi level and electronic states involved in the transport.
Clearly the transmission probability, Fig. 1(b), varies signif-
icantly on the scale of typical optical phonon frequencies
(0.2 eV).

The basis of the LOE method is the Meir-Wingreen formula
for the electron current where one in addition applies a
set of closed Dyson and Keldysh equations by replacing
the full Green’s function with the single-particle Green’s
function [34]. The equations are expanded to lowest order
in the electron-phonon coupling matrix (Mλ) in the device
region and simplified to describe the IETS signals using the
fact that these are prominent only close to the excitation
threshold where the applied bias equals the vibrational energy
Vb = μL − μR = ±ωλ. Here μL/R are the chemical potentials
of the left/right electrodes, and ωλ is the vibrational energy
(we employ atomic units unless explicitly stated e = � = 1).
The LOE expression for the second derivative of the current
I for a given mode λ is a sum of two analytical functions
[34],

∂2
V I = γλ∂

2
V Isym(V,ωλ,T ) + κλ∂

2
V Iasym(V,ωλ,T ), (1)

where

Isym ≡ G0

2

∑
σ=±

σ (ωλ + σV )

×
(

coth
ωλ

2kBT
− coth

ωλ + σV

2kBT

)
. (2)

and

Iasym ≡ G0

2

∫ +∞

−∞
dεH{f (ε′

−) − f (ε′
+)}(ε)

× [f (ε − eV ) − f (ε)], (3)

where f is the Fermi-Dirac function, ε′
± = ε ± ω, H denotes

the Hilbert transform, and G0 is the conductance quantum.
The prefactors can be expressed in terms of the unperturbed
retarded/advanced Green’s function Gr/a and the (time-
reversed) spectral density matrices Aα = Gr
αGa (Ãα =
Ga
αGr ) and only involve evaluations of these quantities
at the chemical potentials for the corresponding excitation
threshold (μL − μR = ±ωλ). We have γλ = γi,λ + γe,λ with
γe,λ ≈ Im Bλ, κλ = 2 Re Bλ,

γi,λ = Tr[MλÃL(μL)MλAR(μR)], (4)

and

Bλ ≡ Tr[MλAR(μL)
L(μL)Gr (μL)MλAR(μR)

− MλGa(μR)
L(μR)AR(μR)MλAL(μL)]. (5)

The first part Eq. (4) is related to the Fermi’s golden rule rate of
scattering from an incoming state with energy ε to a final state
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with energy ε′
±. However, the dependence on energy is more

complicated for the remaining interference terms Eq. (5).
These results are based on a noninteracting (infinite

lifetime) phonon spectral density given by

A(ω) = 2π
∑

λ

[L(ω − ωλ) − L(ω + ωλ)] , (6)

with L(ω) = δ(ω) for zero temperature and zero coupling to
the electrodes. The phonon self-energy r

ph accounts for the
coupling of the device to the phonon modes in the semi-infinite
graphene leads and was calculated by a finite difference
calculation of the force constants in a supercell together
with an iterative procedure for calculating the surface phonon
Green’s function [6]. The broadening of the vibrational density
of states from coupling of the local device vibrations with
bulk electrode phonons can be included as a postprocessing
for each mode by convoluting the ∂2

V I (V ) signal with the
device vibrational spectral function including the coupling to
the electrode phonons. This can be seen using the Lehmann
representation, see Viljas et al. [51]. In the simplest case we
may use a Lorentzian broadened δ function,

Lfric(ω = VSD) = 1

π

ηph/2

(ηph/2)2 + V 2
SD

(7)

to obtain the signal at the threshold voltage as

∂2
V IB(V ) =

∫
dV ′∂2

V ′I (V ′)L(V − V ′). (8)

The broadening, or linear friction coefficient, can be calculated
from the diagonal elements of the phonon self-energy due
to the coupling with the leads ηph = − ∂

∂ω
(Im[r

ph])|ω=0.
Alternatively, we may use the actual phonon DOS of each
mode,

LDOS(ω) = DOS(λ,ω) = −2ω

π
Im

[
Dr

λ,λ(ω)
]
, (9)

where we made use of the phonon retarded Green’s function Dr

expressed in the phonon mode eigenspace. The broadening in
Eq. (9) has a more complex line shape than the Lorentzian but is
guaranteed to reproduce all features in the total phonon DOS =∑

λ DOS(λ,ω). The convolution of the signals in Eq. (8) will
be performed with both of the broadening models in Eqs. (7)
and (9) for comparison.

In Fig. 1(c), we compare the DOS found from NEGF, cf.
Eq. (9), with that of the friction model using the approximate
self-energy r

ph = −iηphω in accordance with the Lorentzian
broadening in Eq. (7) to substantiate our broadening models.
The friction model is able to capture most key signatures
in the DOS [52], such as peak positions and the underlying
envelope shape which is an indication of the broadening
at each frequency. The presence of narrow peaks in the
DOS indicates localized vibrations in the constriction despite
the strong contact with the graphene leads. In the next
section, we will examine how the vibrations interact with the
current.

III. INELASTIC SIMULATIONS AND RESULTS

We now apply the widely used model gate where one simply
tunes the Fermi-level μF through the electronic spectrum. We

(a)

(b)

VSD [V] 

Off resonance 

On resonance 

M M M M

M M M M

z 

x 

z

(c) 0.193eV 0.192eV 0.172eV 0.171eV 

0.168eV 0.128eV 0.076eV 0.049eV 

FIG. 2. Comparison of the LOE-WBA (dashed blue line) and
LOE (full red line) results for the inelastic vibrational signals in
the second derivative of the current. The device is either gated to
(a) a transmission resonance at μF ≈ ±0.6 eV or gated (b) away
from resonance at μF ≈ ±0.85 eV. We also compare with the LOE
results obtained with ATK (thin black line). (c) Vibrational modes
contributing to the five main peaks in the second derivative of
the current at resonance. The mode displacements are illustrated
by arrows on top of the current density from Fig. 1(a) inside the
constriction. The transport direction is along z [opposite Fig. 1(a)].

start by analyzing results neglecting the phonon broadening
from the electrodes. In Fig. 2 the results from the LOE are
presented and compared to that of the original LOE-WBA
where all electronic parameters are evaluated at the equilibrium
chemical potential.

We compare two situations: One where the system is gated
close to the resonance (μF ≈ ±0.6 eV), Fig. 2(a), or one
where the system is gated to a chemical potential where
the electronic structure is effectively energy independent
within the scale of phonon frequencies (μF ≈ ±0.85 eV),
Fig. 2(b). On- and of-resonance positions are also indicated by
arrows in Fig. 1(b). At resonance, see Fig. 2(a), the spectrum
changes quite remarkably between the two models. The LOE
method gives rise to several dip-peak features not present
in the original LOE-WBA model. Within the LOE-WBA
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the electron-phonon coupling seems artificially strong, i.e.,
the change in conductance is larger than a few percent. The
LOE gives a significantly lower signal which is related to the
difference in density of states for the initial and final states.
Tuning the energy away from the resonance (μF ≈ ±0.85 eV),
the LOE model gives results consistent with the LOE-WBA,
Fig. 2(b). The IETS signal undergoes a sign change from peaks
off-resonance to dips at resonance, consistent with previous
single-level model considerations [38,39]. In addition, we
have shown the results obtained from the LOE implemented
in ATK Figs. 2(a) and 2(b). In general, we find good
agreement between the two implementations. The same signals
are present in both calculations with differences in peak
position and intensity being related to a slight variation in
the equilibrium lattice constant in the two DFT codes using
different pseudopotentials.

We will next analyze the origin of the five distinct peaks at
resonance where the strongest interacting modes are located
around 170 meV. The eight phonon modes with the largest
inelastic signal are illustrated in Fig. 2(c). The contributing
modes are the same within both LOE-WBA and LOE, although
the LOE signal is clearly different. Since the current mainly
runs through the π orbitals, we expect the current to interact
the strongest with longitudinal modes in the device plane.
Due to the symmetry plane the Hamiltonian is the same for
planar graphene nanostructures whether we move atoms up or
down in the out-of-plane direction. Therefore, the out-of-plane
electron-phonon coupling elements between π orbitals will
be zero, and the characteristic vibrations found for the GNC
are all in-plane modes as expected. Comparing the scattering
state symmetry at resonance, Fig. 1(a) and repeated inside
the constriction in Fig. 2(c), it is evident that these modes all
have displacement in the regions where the scattering state
and current density are largest, i.e., near the ribbon edge
of the entrance to the constriction or near the center of the
ribbon.

With an explanation of the vibrational signals near and
far from resonance at hand, we now target three additional
questions. First, we apply the extensively used approximation
of a rigid shift as a gate voltage to screen the IETS on a fine
grid of gate (Vg) and source-drain bias (VSD) voltages. This
enable us to evaluate how close to the resonance we need to
gate before strong IETS appears. Second, we will apply the
broadening from the electrode phonons in order to evaluate
the robustness of the signals. Finally, we will include the self-
consistent electronic structure obtained at a finite bias and gate
doping, which is a quite demanding calculation but enables us
to judge the importance of including the full self-consistent
potential, which was so far neglected.

The computed IETS signals as a function of varying
gate voltage are shown in Fig. 3(a) as a density plot. It
illustrates how the IETS signal is largest for gate values
where the transmission varies the most, i.e., at the resonance
(Vg ≈ 0.6 eV, vertical dashed line) and at the band edge
(Vg ≈ 0.15 eV). In addition, the signals are clearly present
in a region of �Vg ≈ ωλ (up to 0.2 V) around the peak
position. We conclude that the inelastic signals are only present
when the Fermi-level position is tuned to gate values where
electron transmission resonances are present. Therefore IETS
and its variation with gate voltage will strongly indicate if sharp

(a) 
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VSD [V] 
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M2 
M3 

M4 

M5 M6 M7 

M8 

FIG. 3. (a) Inelastic vibrational signals in the LOE second
derivative of the current as a function of gate Vg and applied bias
voltages VSD . (b) Second derivative of the current at the specific gate
value indicated by a dashed vertical line (on-resonance) in (a).

resonances are present in a nanostructured graphene device.
The IETS spectra at Vg ≈ 0.6 eV are shown in Fig. 3(b). So far
the finite broadening in the vibrational signals was obtained
from the finite temperature of T = 4.2 K. Other broadening
mechanisms exist, e.g., originating from a lock-in modulation
voltage [33] or coupling to the surrounding electrode phonon
baths and anharmonic couplings. Table I contains the linear
frictions, giving the broadening due to the phonon bath for
the characteristic modes. The friction is smallest for modes
localized in the center of the constriction (e.g., M3 and M6)
and larger for modes with displacements near the contacts (e.g.,
M1, M5, and M7). The largest phonon friction in the system
is found to be ηph = 77 meV for comparison for a mode that
however does not couple significantly with the current. We find
that the phonon broadening varies by three orders of magnitude
in the range of 0.1–100 meV between the different phonon
modes.

In Fig. 3(b), we include the damping/broadening from the
friction model, red dashed-dotted line obtained from Eq. (7),
and the full phonon DOS, black solid line obtained from
Eq. (9), and compare with the original signal, blue dashed
line. We include the broadening from the electrode phonons as
the convolution described in Eq. (8). Despite the broadening
from electrode phonons we find robust fingerprint signatures.
In addition, the difference in the broadening between the
vibrational modes is clearly visible in the IETS signals. For
instance, the signal around 0.08 and 0.2 eV (M1, M2, and

TABLE I. The friction from phonon ηph and electron ηe baths for
the eight characteristic modes.

meV M1 M2 M3 M4 M5 M6 M7 M8

ω 193 192 172 171 168 128 76 49
ηph 16.2 3.0 0.6 5.2 6.3 0.2 6.4 2.6
ηe 0.9 0.6 1.7 0.9 2.9 0.2 1.9 1.1
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M7) is reduced significantly whereas most of the signals at
0.05, 0.128, and 0.17 eV (M8, M6, and M3–M5) survive.
The frictional broadening model, cf. Eq. (7), exaggerates
the broadening mechanism compared to the full line-shape
model, cf. Eq. (7). Well-defined IETS signals using the more
approximate friction model thus imply that these exist also
for the more elaborate damping. However, M6 is reduced
slightly more by the full line-shape model than the friction
model.

The line shape itself can change due to the phonon
broadening such that a dip-peak resembles more a peak when
the phonon broadening is included, see for instance the highest
frequency mode (M1). We conclude that the dominant inelastic
vibrational signals occur for modes that at one time have
a symmetry dictated by the electronic scattering states in
Fig. 2(a) and at the same time are marginally localized near the
electrodes so that the vibrational broadening from the electrode
phonons is low [Fig. 2(c) and Table I).

We have also tried to apply a constant artificial broadening
to all peaks to examine at what friction value the peaks
start to vanish. We find that the first peaks get impossible
to distinguish at a friction of approximately 5 meV whereas
all peaks vanish at constant frictions above 10 meV. Both of
these values are smaller than typical broadenings found in the
system.

In Table I we for comparison list the damping due to
electronic friction ηe, calculated from the method described
in Ref. [6]. The electronic friction is in general strongly
dependent on bias voltage and is here evaluated at the threshold
voltage of VSD = ωλ. It is notably large for mode M5 and
can for a few modes (M3 and M6) be on the same order
of magnitude as the phonon friction. A few modes with a
strong coupling to the current also obtain a large phonon
friction relative to the electronic friction, i.e., M1 and M7.
Interestingly, we find that ηe decreases with VSD since the
electronic structure away from the resonance comes into play.
As a consequence the electronic friction may play a more
dominant role as broadening near a resonance, whereas it can
be tuned with the applied bias voltage. In a previous study we
calculated the current-induced forces and heating in the GNC
system. We note that the modes here giving the largest IETS
signal in the current are different from the modes which we
have found to yield a highly nonlinear heating at bias voltages
above 0.4 V and which are related to a current induced and can
give rise to negative electronic friction for certain “run-away”
modes [6].

In Fig. 4 we include the self-consistent electronic structure
obtained at a finite bias and an electrostatic gate. The
electrostatic gate is modeled by adding a charge q on a plane
20 Å below the system and −q to the device generating an
electric field. For a detailed discussion of the gating model
and the potential drop we refer the reader to Ref. [53]. Here,
we focus on the main signal near resonance. Increasing the
bias voltage in the DFT-NEGF simulation (VSD = 0.25 V and
q = 0), hereby including the potential drop in the electronic
structure, introduces a slight shift in the signal position with
respect to Vg but does not influence its magnitude. Changing
the charge of the system separately (VSD = 0 V and q = −2e)
is observed to move the location of the signal almost 0.2 eV.
Including both charge and bias voltage (VSD = 0.25 V and

Vg [V] Vg [V] 

Charge (q) 

VSD=0, q=0 

VSD=0.25, q=0 

VSD=0, q=-2e 

VSD=0.25, q=-2e 

FIG. 4. Dependence of the second derivative of the current on the
physical gate and bias voltage.

q = −2e) does to some extent break the symmetry of the
IETS signals, but the magnitude and the dominating modes
are unaffected.

IV. CONCLUSIONS

To summarize, we have presented the calculations of
inelastic vibrational signals in GNCs where the phonon
broadening and high phonon frequencies necessitate extended
methodology. First-principles calculations of the inelastic
vibrational signals in the current can include the electrode
phonon broadening through a postprocessing for each vibra-
tional mode. In particular, we find that the broadening from the
electrode phonons can vary by up to three orders of magnitude
between the vibrational modes. We find several strong inelastic
signals for Fermi-level positions close to electron transmission
resonances which are robust against finite-bias effects as well
as broadening from the electrode phonons. Therefore, inelastic
signals depending on gate voltage can be used to investigate
if sharp electron transmission resonances are present in a
nanostructured graphene device. The propensity rules dictate
that the dominant inelastic vibrational signals occur for modes
that both have a symmetry coinciding with that of the electronic
scattering states and at the same time are marginally localized
near the electrodes so that the vibrational broadening from the
electrode phonons is low.
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