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Quantum effects of plasmonic phenomena have been explored through ab initio studies, but only for
exceedingly small metallic nanostructures, leaving most experimentally relevant structures too large to
handle. We propose instead an effective description with the computationally appealing features of classical
electrodynamics, while quantum properties are described accurately through an infinitely thin layer of
dipoles oriented normally to the metal surface. The nonlocal polarizability of the dipole layer—the only
introduced parameter—is mapped from the free-electron distribution near the metal surface as obtained
with 1D quantum calculations, such as time-dependent density-functional theory (TDDFT), and is
determined once and for all. The model can be applied in two and three dimensions to any system size that
is tractable within classical electrodynamics, while capturing quantum plasmonic aspects of nonlocal
response and a finite work function with TDDFT-level accuracy. Applying the theory to dimers, we find
quantum corrections to the hybridization even in mesoscopic dimers, as long as the gap itself is
subnanometric.
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Nanoscale metallic structures receive considerable atten-
tion for plasmon phenomena beyond classical electrody-
namics [1–5]. In deep nanoscale structures, quantum effects
manifest themselves [6]. Size-dependent plasmon energies
of metallic particles, a common topic in condensed matter
physics [7–11], has been revisited with new insights [1,2].
Dimers hosting angstrom-scale gaps are being investigated
intensively in search of quantum-tunneling effects [3,4],
though interpretations highlight both quantum tunneling
[12] and semiclassical dynamics [13]. Time-dependent
density-functional theory (TDDFT) allows explorations
into the quantum regime [14–16], albeit limited to
atomic-scale systems.
Here we focus on the mesoscopic scale that is typical for

state-of-the-art experiments: too small to obey classical
local-response approximation (LRA), but too large for an
efficient quantum treatment. Plasmonics at this scale has so
far been described with some success by semiclassical
hydrodynamic Drude model (HDM) that exhibit nonlocal
response [5,13,17–20] and by the quantum-corrected
model (QCM) for gaps between metals [12]. It is, however,
desirable to look beyond these models.
In this Letter, we present the projected dipole model

(PDM), a theory predicting optical properties of meso-
scopic plasmonic systems with TDDFT-level accuracy.
Their quantum effects are captured by a zero-thickness
projected dipole layer (PDL) onto the metal surface, see
Fig. 1. The idea is partly inspired by Ref. [18], where a
finite-thickness local layer represents the HDM nonlocal
response. Here, we go beyond the HDM and capture
quantum phenomena of a microscopic theory of choice,

TDDFT. A crucial computational advantage of the PDL is
that its inclusion is elegantly absorbed into boundary
conditions at the interface.
Projected dipole layer.—We first introduce the PDL, the

key concept of our model. To reproduce quantum results of
the reflectivity of a planar metal-air interface at x ¼ 0, we
add an infinitely thin layer of dipoles to the corresponding
interface. The response of this PDL is defined as
PPDL ¼ ϵ0αn̂ n̂ ·EairδðxÞ, where n̂ is the normal vector
pointing outward the metal and Eair is the electric field in
the air region. The unknown polarizability α of the
polarization field PPDL will be identified below, after
further motivating our model. The semi-infinite metal at
x < 0 that is in the electrostatic limit driven by an external
electric potential ϕext ¼ eik∥·sþk∥x, where s ¼ yŷ þ zẑ,
exhibits an induced electron density ρðxÞ ¼ q1δðxÞ within
the LRA. The induced electric potential in the air equals
−eq1e−k∥x=2k∥. By contrast, ρðxÞ spreads across the

FIG. 1 (color online). In the projected dipole model, light-
driven quantum-plasmonic response in a metallic nanostructure
(left) is represented in classical electrodynamics by an infinitely
thin layer of dipoles that point perpendicularly to the surface
(right). The loupe (left) highlights the spill-out of the microscopic
electron distribution inducing a dipole moment proportional to
the Feibelman parameter dc.
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interface in quantum theories. The induced electric poten-
tial consequently has a multipole expansion ð−eq2e−k∥x=
2k∥Þ½1þ k∥dc þOðk2∥d2cÞ�. Here the first and second terms
in the bracket represent the monopole and dipole contri-
butions, respectively, with q2 ¼

R
dxρðxÞ and dc ¼R

dxxρðxÞ=q2 as the Feibelman parameter, i.e., the centroid
of the induced charge. Clearly, the leading-order quantum
effect is to induce a dipole moment proportional to dc in the
surface region. This motivates our choice of a PDL to
capture quantum effects.
Planar surface polarizability.—Next we identify the

polarizability of the PDL for the 1D planar metal-air
interface (for dielectric surroundings, see [21]).
Employing the TDDFT within the jellium approximation
[22], we obtain the reflection coefficient RKSðk∥;ωÞ for the
incident field. To require that the PDL system produces the
same reflection, we have [23]

αðω; k∥Þ ¼
½1 − RKSðω; k∥Þ� − ϵLRAm ½1þ RKSðω; k∥Þ�

k∥ϵLRAm ðωÞ½1 − RKSðω; k∥Þ�
; ð1Þ

where ϵLRAm is the bulk permittivity of the metal. To
interpret this result, we look into its long-wavelength
(k∥ → 0) limit denoted as αL. Since RKS in this limit
equals −½ϵLRAm ðωÞ − 1�½1þ k∥dcðωÞ�=½ϵLRAm ðωÞ þ 1 −
ðϵLRAm ðωÞ − 1Þk∥dcðωÞ� [31], we get αL ¼ ½ϵLRAm ðωÞ−
1�dcðωÞ=ϵLRAm ðωÞ, which shows a direct relation between
αL and dc as our intuitive expectation. Here dc parameter-
izes two important quantum effects: electron spill-out via
Re½dc� and electron-hole (e-h) excitations via Im½dc� [7].
Within the HDM, dc becomes −1=kL (“spill-in” proper for
noble metals [2,5] but not for simple metals [15,16]) in
terms of the Thomas-Fermi wave number kL [17], and
αL ¼ ðϵLRAm − 1Þ=ðϵLRAm kLÞ, which is similar to the dielec-
tric layer in Ref. [18]. The standard HDM cannot describe
electron spill-out or e-h excitation, though; only recent
HDM extensions include spill-out [19,32,33].
The plasmonic response of sodium exhibits an interplay

between nonlocal response and spill-out due to a finite
work function, and illustrates the potential of the PDM.

Figure 2(a) shows reflection spectra off a planar sodium-air
interface for different k∥ by TDDFT. The peak around 4 eV
corresponds to the surface plasmon (SP) resonance, which
first redshifts and then blueshifts as k∥ increases, while
the width shows a broadening due to e-h excitations.
Figure 2(b) depicts αL, with around 4.8 eV a sign change
of Re½αL� and a peak in Im½αL�, which manifests the
multipole surface plasmon resonance [8]. Figure 2(c)
exhibits an increased k∥ dependence of α for larger
energies, so αL is a good approximation only at low
energies.
Arbitrary structures.—With the planar polarizability

αðω; k∥Þ as the input parameter of the theory, we here
generalize it for an arbitrary structure. We seek the polar-
izability in real space, which for the planar surface is given
by the inverse Fourier transform of αðω; k∥Þ, and holds a
nonlocal form αpðω; js − s0jÞ. As observed in Fig. 2(c), α is
nearly constant for k∥ < kc ≃ 0.1kF. Thus, the nonlocal
range of αp is of the order 1=kc ≃ 1 nm. For a curved
surface with its curvature exceeding the 1-nm scale, we
safely assume that the polarizability has the same expres-
sion as αp, with the distance defined as the length of the
shortest path between two points on the PDL, i.e., the
shortest geodesic [24]. We thus obtain

αðω; s; s0Þ ¼ αpðω; js − s0jsgÞ: ð2Þ

Here, js − s0jsg represents the length of the shortest path
between s and s0 on the PDL. We note that in Eq. (2),
possible quantum size effects, i.e., the quantization of the
electronic bands due to the confinement of the electron gas,
are not taken into account. In metals, such effects are
only pronounced when the confinement size approaches
1 nm [34].
In the LRA, the key parameter is ϵLRAm . Including the

quantum freedoms, we show that an additional parameter α
is needed. Accordingly, the predictive power of the PDM is
subject to the accuracy of the underlying ab initio theory (in
our case, TDDFT). Potentially, α might even be obtained
through experiments, with tabulations for different metals
similar to the common practice for ϵLRAm . The presence of
the PDL is equivalent to the boundary condition connecting
the electric fields in the metal and air regions with
E∥;airðsÞ − E∥;metalðsÞ ¼ −∇s

R
ds0αðω; s; s0Þn̂ðs0Þ ·Eairðs0Þ

[23]. Here the subscript “∥” represents the tangential
components and the operator ∇s gives the gradient com-
ponents in the tangential directions of the boundary. The
discontinuity of the parallel electric fields across the
boundary is a direct manifestation of the PDL, which
squeezes the spatial information of the microscopic elec-
tron distribution into a zero-thickness layer. The boundary
condition can be conveniently adopted in numerical com-
putations, and its convolution integral is similar in form to
the Green’s function integral in classical electrodynamics.
As such, it introduces no extra complications. If large

(b)

(a) (c)

FIG. 2 (color online). (a) TDDFT reflection spectra of a sodium
surface for the electric field incidence with different k∥ (in units of
kF) as illustrated in the inset. (b) Long-wavelength polarizability
αL. (c) Magnitude of polarizability α normalized by αL.
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momentum fields do not contribute to the dynamics
significantly, α can be approximated by the local form
αLðωÞδðs − s0Þ with the simplified boundary condition
E∥;air −E∥;metal ¼ −αL∇sðn̂ ·EairÞ [23]. Below, we use
Eq. (2).
Benchmarks against TDDFT.—We confirm the validity

of the PDM for a sodium dimer of two identical cylindrical
nanowires excited by an electric field along the gap. In
Fig. 3(a), we present the extinction spectra predicted by
LRA, PDM, and TDDFTwith a nanowire of radius 4.9 nm
and gap 0.74 nm. The local bulk permittivity is
ϵLRAmetal ¼ 1 − ω2

p=ωðωþ iγÞ, where ωp ¼ 5.89 eV, γ ¼
0.085 eV for the PDM, and γ ¼ 0.16 eV for the LRA
[15]. The PDM and TDDFT spectra agree with each other
quantitatively, and both predict that the SP peak redshifts
with respect to the LRA one, and that the resonance is
broadened. The latter phenomenon can be qualitatively
captured by the generalized nonlocal optical response [13]
via the diffusive scattering of the surface current, while the
redshift of the resonance requires for the accounting of
electron spill-out [15,16].
As the size of the electron system decreases, surface

curvature and quantum size effects may challenge the
assumptions behind the PDM. Considering the nanowire
dimer with 2-nm radius and 1-nm gap, we plot the
extinction spectra in Fig. 3(b). The PDM results still agree
surprisingly well with TDDFT spectra. Furthermore, as one
of our main results we find that the PDM and TDDFT
spectra agree well, despite the fact that the PDM models
both metal-air interfaces in an independent surface approxi-
mation (ISA).
The multiscale dimer system with a subnanometer

gap distance introduces an additional small scale for

hosting the quantum effects [14,35]. Such a setup is usually
challenging for ab initio studies, especially for 3D systems.
However, the PDM can be applied efficiently. Figure 3(c)
depicts the color map of the extinction cross section
predicted by the PDM for the 3D sodium spherical dimer
with particle radius ranging from 3 to 23 nm and with a gap
of 0.74 nm. To demonstrate the quantum effects of a typical
multiscale system, Fig. 3(d) plots the extinction spectra at
the 20-nm radius of Fig. 3(c) (dash-dot line), contrasting
the PDM and LRA results. Similar to Figs. 3(a) and 3(b),
quantum effects manifest themselves by shifting and
broadening the SP resonances. Interestingly, the higher-
order modes in this case are less affected by quantum
effects, since plasmon fields in larger structures are less
confined.
More gap effects.—In the PDM, we invoked the ISA and

thus only included quantum effects related to a single metal
surface. When the gap between two metal surfaces
approaches the dc scale, the significant wave function
overlap of the two surfaces should be taken into account.
An intuitive way is to treat the gap as an effective medium,
as introduced in the QCM with a Drude permittivity, to
mimic the dissipation associated with quantum tunneling
(QT) [12]. To promote the PDM for the smallest gaps, here
we present an unambiguous extraction of the effective gap
permittivity from TDDFT calculations, instead of relying
on the assumption that QT is the cause of all gap-related
dissipation.
Turning from the spectral to the spatial information

provided by TDDFT, we extract the effective local per-
mittivity ϵeff defined as D=½ϵ0E�. In Fig. 4(a) we visualize

FIG. 3 (color online). Extinction properties of sodium dimers
within LRA, PDM, and TDDFT for (a) cylindrical wire with
radius 4.9 nm and gap 0.74 nm, (b) cylindrical wire with radius
2 nm and gap 1 nm, (c) spherical particle with radius varying from
3 to 23 nm and with 0.74-nm gap distance, where the extinction
cross sections are normalized by the surface area of the sphere,
and (d) the 20-nm radius case [dash-dotted line in (c)]. TDDFT
results in (a) and (b) are reproduced from Refs. [15] and [16],
respectively.

FIG. 4 (color online). Gap effects for planar sodium-vacuum-
sodium gap structures within TDDFT. (a) Effective permittivity
for a single interface and for 5 and 0.5 Å gaps. (b) Frequency
dependence of the corresponding midgap effective permittivities.
Dashed lines indicate the lossless Drude model, with its plasma
frequency determined by the midgap equilibrium electron den-
sity. (c) Electron-hole backward scattering proportion (BSP) as a
function of gap distance and energy.
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ϵeff for a single interface and for two gap distances, 5 and
0.5 Å. For the 5-Å gap case, two separated metallic systems
can be identified, as seen from the clear boundaries
between the negative- and positive-valued regions of
Re½ϵeff �, as well as for the single interface. Furthermore,
the loss Im½ϵeff � peaks right at the interfaces where we
likewise have Re½ϵeff � ∼ 0. The dissipation (associated with
e-h excitations) occurs around the metal surface, in agree-
ment with mesoscopic transport theory [36]. By contrast,
for the 0.5-Å gap no definite boundary of the two metals
can be observed from the equilibrium electron density. The
induced electron current at the gap center is, accordingly,
the classical Drude current. In the optical spectra this
regime (gaps of 1–2 Å and below) is characterized by a
transition from the bonding-dipole plasmon (BDP) reso-
nance to the charge-transfer plasmon (CTP).
Figure 4(b) shows midgap properties, ϵgap ¼ ϵeffðx ¼ 0Þ,

for gaps of 5, 2, and 0.5 Å. In general, we anticipate a
transition from non-Drude (quantum) response to Drude
(classical) response as the gap reduces. Indeed, for the
0.5-Å gap the midgap response is captured by the classical
Drude model (dashed line) [37]. On the other hand,
the larger separation of 5 Å shows a completely non-
Drude behavior. The 2-Å gap exhibits almost frequency-
independent Re½ϵgap�, thus constituting the crossover gap
size between non-Drude and Drude responses.
Modeling Å-sized gaps.—We will now discuss how in

the PDM a dimer gap can be treated as an effective medium
[12], thereby accounting for not only quantum effects of
individual metal interfaces but also for their strong mutual
proximity. The procedure in this projected dipole gap
model (PDGM) is to treat the gap as an effective medium
with permittivity ϵgap (extracted from TDDFT) within the
PDM. To illustrate the accuracy of the PDGM, we consider
a nanowire dimer of two sodium cylinders with radius
4.9 nm driven by a uniform electric field along the gap. In
Fig. 5 we illustrate the extinction spectra as the gap distance
decreases from 5.3 to 0 Å (contact). As expected, not all
LRA resonances are supported by the more accurate
TDDFT calculations. The PDM captures the broadening
of the resonance as the gap reduces, with spectra closely
resembling those of TDDFT. However, the PDM neglects
gap effects, and, therefore, underestimates the resonance
broadening. For the same reason the CTP does not appear
before physical contact. Turning to the PDGM, we find
almost perfect agreement with the TDDFT spectra, even for
the smallest gaps.
Discussion.—The great accuracy of the PDM in Fig. 3

and of the PDGM in Fig. 5 calls for a discussion of the
dissipative quantum processes at interfaces and near gaps.
The TDDFT calculations account for plasmon damping due
to e-h excitations. To interpret our results, we identify two
scattering processes: an electron state propagating towards
the interface or gap can create e-h pairs in forward or
backward scattering. For a single interface, at energies

below the work function all dissipation due to e-h creation
is associated with backward scattering, while forward
scattering exists above the work function. In contrast, for
a dimer structure with a narrow gap, forward scattering
below the work function is permitted. The PDM assumes
all gap- and interface-related loss to be due to backward
scattering, whereas the QCM calculates all gap-related loss
as due to QT, i.e., forward scattering [12]. Finally, the
PDGM does not systematically exclude one or both
processes. Thus, the question is whether forward or back-
ward scattering dominates e-h creation.
Figure 4(c) depicts the e-h backward scattering propor-

tion (BSP) [23], defined as the ratio between the backward
and total scattering rates, for two vacuum-gapped planar
sodium surfaces excited by a uniform electric field. The
BSP exhibits completely different behavior depending on
the gap sizes. For gaps > 7 Å, the BSP approaches 100%
below the work function (dashed line), which explains the
validity of the PDM in Fig. 3. For smaller gaps, down to
3 Å, the BSP continuously decreases. Below the work
function this is due to QT, and should relate with the
lowered energy barrier, which eases the e-h excitations
across the gap for high energies. As the gap shrinks further
below 3 Å, the concept of QT is not well defined, since
the vacuum gap separating different systems cannot be
unambiguously defined. Accordingly, the BSP starts
increasing when gaps are smaller than 3 Å, and eventually
dominates the forward scattering at low energies.
In conclusion, we propose a projected dipole model for

quantum plasmonics, where the quantum response is
represented within the framework of classical electrody-
namics by a zero-thickness dipole layer. We have shown
that the PDM can predict quantum plasmonic aspects of
nonlocal response and a finite work function with TDDFT-
level accuracy. In addition to the demonstrated extinction
spectra, the PDM works equally well for the near-field

FIG. 5 (color online). Extinction cross sections of a cylindrical
sodium nanowire dimer with radius 4.9 nm, for gaps decreasing
from 5.3 to 0 Å. Comparison of predictions by LRA, TDDFT,
PDM, and PDGM. TDDFT spectra originate from Ref. [15].
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properties [23]. Our work also provides insights into the
possible importance of optical tunneling currents in plas-
monic dimers. Finally, our results have great potential for
multiscale modeling in computational plasmonics, where
quantum effects can now be accurately explored even in
large systems.

The Center for Nanostructured Graphene is sponsored by
the Danish National Research Foundation, Project
No. DNRF58. The work was also supported by the
Danish Council for Independent Research–Natural
Sciences, Project No. 1323-00087, and by the Lundbeck
Foundation, Grant No. 70802. N. A. M. acknowledges the
Proexcellence program of the Thuringian State
Government (ACP2020).

[1] J. A. Scholl, A. L. Koh, and J. A. Dionne, Nature (London)
483, 421 (2012).

[2] S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N.
Kostesha, A.-P. Jauho, A. Burrows, M. Wubs, and N. A.
Mortensen, Nanophotonics 2, 131 (2013).

[3] K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J.
Aizpurua, and J. J. Baumberg, Nature (London) 491, 574
(2012).

[4] S. F. Tan, L. Wu, J. K.W. Yang, P. Bai, M. Bosman,
and C. A. Nijhuis, Science 343, 1496 (2014).

[5] C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I.
Fernández-Domínguez, S. A. Maier, J. B. Pendry, A.
Chilkoti, and D. R. Smith, Science 337, 1072 (2012).

[6] M. S. Tame, K. R. McEnery, S. K. Oezdemir, J. Lee, S. A.
Maier, and M. S. Kim, Nat. Phys. 9, 329 (2013).

[7] P. J. Feibelman, Prog. Surf. Sci. 12, 287 (1982).
[8] A. Liebsch, Phys. Rev. B 48, 11317 (1993).
[9] P. Apell and D. R. Penn, Phys. Rev. Lett. 50, 1316 (1983).

[10] J. Tiggesbäumker, L. Köller, K. H. Meiwes-Broer, and A.
Liebsch, Phys. Rev. A 48, R1749 (1993).

[11] K. P. Charlé, L. König, S. Nepijko, I. Rabin, and W.
Schulze, Cryst. Res. Technol. 33, 1085 (1998).

[12] R. Esteban, A. Borisov, P. Nordlander, and J. Aizpurua, Nat.
Commun. 3, 825 (2012).

[13] N. A. Mortensen, S. Raza, M. Wubs, T. Sondergaard, and
S. I. Bozhevolnyi, Nat. Commun. 5, 3809 (2014).

[14] D. Marinica, A. Kazansky, P. Nordlander, J. Aizpurua, and
A. Borisov, Nano Lett. 12, 1333 (2012).

[15] T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov,
Phys. Rev. Lett. 110, 263901 (2013).

[16] L. Stella, P. Zhang, F. García-Vidal, A. Rubio, and P. García-
González, J. Phys. Chem. C 117, 8941 (2013).

[17] S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, and N. A.
Mortensen, Phys. Rev. B 84, 121412(R) (2011).

[18] Y. Luo, A. I. Fernández-Domínguez, A.Wiener, S. A.Maier,
and J. B. Pendry, Phys. Rev. Lett. 111, 093901 (2013).

[19] C. David and F. J. García de Abajo, ACS Nano 8, 9558
(2014).

[20] S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen,
J. Phys. Condens. Matter 27, 183204 (2015).

[21] D. Jin et al., arXiv:1504.07867.
[22] Time-Dependent Density Functional Theory, Lecture Notes

in Physics Vol. 706, edited by M. A. L. Marques, C. A.
Ullrich, F. Nogueira, A. Rubio, K. Burke, and E. K. U.
Gross (Springer, Berlin, 2006).

[23] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.115.137403, which in-
cludes Refs. [2,5,12,13,15,16,22,24,25–30].

[24] U. Leonhardt and T. G. Philbin, Prog. Opt. 53, 69 (2009).
[25] W. Yan, N. A. Mortensen, and M. Wubs, Phys. Rev. B 88,

155414 (2013).
[26] N. Lang and W. Kohn, Phys. Rev. B 1, 4555 (1970).
[27] R. Kimmel and J. A. Stehian, Proc. Natl. Acad. Sci. U.S.A.

95, 8431 (1998).
[28] H. Bruus and K. Flensberg,Many-Body Quantum Theory in

Condensed Matter Physics: An Introduction (Oxford
University Press, Oxford, 2004).

[29] F. J. García de Abajo and A. Howie, Phys. Rev. Lett. 80,
5180 (1998).

[30] T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov,
Opt. Express 21, 27306 (2013).

[31] K. D. Tsuei, E. W. Plummer, A. Liebsch, E. Pehlke,
K. Kempa, and P. Bakshi, Surf. Sci. 247, 302 (1991).

[32] G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl,
F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, Nat.
Commun. 6, 7132 (2015).

[33] W. Yan, Phys. Rev. B 91, 115416 (2015).
[34] R. C. Monreal, T. J. Antosiewicz, and S. P. Apell, New J.

Phys. 15, 083044 (2013).
[35] S. Raza, M. Wubs, S. I. Bozhevolnyi, and N. A. Mortensen,

Opt. Lett. 40, 839 (2015).
[36] S. Datta, Electronic Transport in Mesoscopic Systems

(Cambridge University Press, Cambridge, England, 1995).
[37] M. Ichikawa, J. Phys. Soc. Jpn. 80, 044606 (2011).

PRL 115, 137403 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

25 SEPTEMBER 2015

137403-5

http://dx.doi.org/10.1038/nature10904
http://dx.doi.org/10.1038/nature10904
http://dx.doi.org/10.1515/nanoph-2012-0032
http://dx.doi.org/10.1038/nature11653
http://dx.doi.org/10.1038/nature11653
http://dx.doi.org/10.1126/science.1248797
http://dx.doi.org/10.1126/science.1224823
http://dx.doi.org/10.1038/nphys2615
http://dx.doi.org/10.1016/0079-6816(82)90001-6
http://dx.doi.org/10.1103/PhysRevB.48.11317
http://dx.doi.org/10.1103/PhysRevLett.50.1316
http://dx.doi.org/10.1103/PhysRevA.48.R1749
http://dx.doi.org/10.1002/(SICI)1521-4079(199810)33:7/8%3C1085::AID-CRAT1085%3E3.0.CO;2-A
http://dx.doi.org/10.1038/ncomms1806
http://dx.doi.org/10.1038/ncomms1806
http://dx.doi.org/10.1038/ncomms4809
http://dx.doi.org/10.1021/nl300269c
http://dx.doi.org/10.1103/PhysRevLett.110.263901
http://dx.doi.org/10.1021/jp401887y
http://dx.doi.org/10.1103/PhysRevB.84.121412
http://dx.doi.org/10.1103/PhysRevLett.111.093901
http://dx.doi.org/10.1021/nn5038527
http://dx.doi.org/10.1021/nn5038527
http://dx.doi.org/10.1088/0953-8984/27/18/183204
http://arXiv.org/abs/1504.07867
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.137403
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.137403
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.137403
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.137403
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.137403
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.137403
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.137403
http://dx.doi.org/10.1016/S0079-6638(08)00202-3
http://dx.doi.org/10.1103/PhysRevB.88.155414
http://dx.doi.org/10.1103/PhysRevB.88.155414
http://dx.doi.org/10.1103/PhysRevB.1.4555
http://dx.doi.org/10.1073/pnas.95.15.8431
http://dx.doi.org/10.1073/pnas.95.15.8431
http://dx.doi.org/10.1103/PhysRevLett.80.5180
http://dx.doi.org/10.1103/PhysRevLett.80.5180
http://dx.doi.org/10.1364/OE.21.027306
http://dx.doi.org/10.1016/0039-6028(91)90142-F
http://dx.doi.org/10.1038/ncomms8132
http://dx.doi.org/10.1038/ncomms8132
http://dx.doi.org/10.1103/PhysRevB.91.115416
http://dx.doi.org/10.1088/1367-2630/15/8/083044
http://dx.doi.org/10.1088/1367-2630/15/8/083044
http://dx.doi.org/10.1364/OL.40.000839
http://dx.doi.org/10.1143/JPSJ.80.044606

