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Intraband effects in excitonic second-harmonic generation
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A theory for the nonlinear excitonic optical response of semiconductors is developed. By adopting the length
gauge, intraband effects are rigorously taken into account. We show that the second-order nonlinear response
mixing intra- and interband transitions can be expressed in terms of generalized derivatives of the exciton Green’s
function. The theory is applied to hexagonal boron-nitride monolayers. For both the linear and nonlinear response,
a dramatic influence of excitons is found. Hence, new discrete resonances appear as well as pronounced changes
in the continuum spectrum.
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I. INTRODUCTION

It is by now very well documented that electron-hole
interactions, i.e., excitonic effects, play an important role
in the linear optical properties of semiconductors [1]. In
particular, low-dimensional semiconductors are sensitive to
excitons because of reduced screening and increased electron-
hole overlap as a consequence of confinement. Prominent
examples include carbon nanotubes [2] and transition-metal
dichalcogenides [3], in which exciton binding energies can
amount to a significant part of the band gap. In the linear
optical response, the spectral modifications reveal themselves
both as discrete exciton resonances in the band gap and as a
renormalization of the continuous part of the spectrum. Much
less is understood about the nonlinear optical properties, al-
though several intriguing experimental indications of excitons
have been found [4–6]. A few early theoretical publications
have considered the influence of electron-hole interactions on
the nonlinear response of bulk semiconductors such as GaAs
[7–9]. Recently, the demonstration of efficient second-
harmonic generation in two-dimensional materials has led
to a renewed interest in this problem [10,11]. Intuitively,
modifications similar to the linear case are expected for low-
order nonlinear processes such as second-harmonic generation
[9]. In fact, in Ref. [10], the second-order spectra were partly
explained in terms of the linear response at the fundamental
frequency ω and the replica at ω/2. However, notable differ-
ences exist between linear and nonlinear response. Primarily,
the selection rules of nonlinearities are highly sensitive to
symmetry with all even order responses being forbidden in
the dipole approximation for centrosymmetric structures [12].
Even more subtle differences are found, though. For a cold,
clean (intrinsic) semiconductor the linear response is entirely
due to interband transitions. At second and higher order,
mixed intra- and interband terms will appear in addition to
pure interband transitions [13–15]. The prototypical example
of such mixed terms is found for two-band semiconductors.
As the second-order response involves three consecutive
transitions, at least one must be of intraband type when
only two bands are available. More generally, excitons couple
correlated intra- and interband transitions.
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In the present work, a model of the second-order nonlinear
excitonic optical response is developed and applied to the
two-dimensional two-band semiconductor hexagonal boron
nitride (h-BN). In the monolayer form, the two π bands of this
material constitute the highest valence and lowest conduction
band, respectively. The odd parity of the π states with respect
to the crystal plane ensures complete decoupling from the even
parity σ states. Hence, to a good approximation the in-plane
optical response in the vicinity of the band gap is attributed
to the two π bands. This greatly simplifies the computation
of the linear excitonic results. We demonstrate here that both
linear and nonlinear excitonic responses follow from a general
density matrix approach. We have previously applied a similar
model to the excitonic second-harmonic response of MoS2

[11], however, taking only purely interband contributions
into account. In the present work, we extend the model to
mixed intra- and interband terms. We follow Aversa and Sipe
[14] and work in the length gauge in order to manifestly
eliminate unphysical low-frequency divergences. Applied to
h-BN sheets, we demonstrate that dramatic excitonic effects
are found in the nonlinear response. Thus, discrete excitons
in the band gap lead to very distinct features in the spectra.
Moreover, the continuum part is strongly affected as well.

II. MIXED INTRA- AND INTERBAND RESPONSE

Working in the length gauge entails handling intraband
dipole matrix elements 〈nk|r|nk〉, where r is the position
operator, n is the band index, and k is the wave vector.
By themselves, such terms are ill-defined in the infinite
crystal limit but by formulating the response in terms of
commutators between the ill-defined intraband dipole operator
and simple operators, such as momenta, a systematic way
of including intraband effects is established [14]. The dipole
matrix elements are then handled according to the separation

〈mk|r|nk〉 = 〈nk|r i |nk〉δnm + 〈mk|re|nk〉(1 − δnm), (1)

where, formally, r i and re are the intra- and interband dipole
operators. Thus, r i and re only have nonvanishing diagonal and
off-diagonal matrix elements in the band basis, respectively.
The perturbation due to the optical field F is then H1 =∑

n hint(rn), where the sum is over all electrons and hint(r) =
eF · (r i + re) is the single-body interaction Hamiltonian. An
appropriate starting point for the mixed intra- and interband
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response is provided by the density matrix formalism [16].
The dynamics of the density matrix ρ is governed by H0 + H1

with H0 the unperturbed Hamiltonian including Coulomb
interactions among electrons. We use a mean-field approach
[17] to describe excitons. Hence, correlations beyond two-
particle effects such as biexcitons are ignored. In Appendix
A, we derive the dynamical equations for a general multiband
material. However, for clarity we restrict the analysis below to
a two-band material with a single occupied valence (v) band
and a single empty conduction (c) band. The diagonal elements
fck ≡ ρcck and fvk ≡ ρvvk represent the band populations,
whereas the off-diagonal elements ρcvk = ρ∗

vck provide the
coherences. As demonstrated in Appendix A, coupling to the
optical field is described by the commutator 〈j k|[hint,ρ]|ik〉.
For general operators, we denote matrix elements by Onmk ≡
〈nk|O|mk〉. The interband part of the interaction Hamiltonian
is straightforward and simply leads to

[eF · re,ρ]cvk = eF · re
cvk(fck − fvk). (2)

In contrast, the intraband operator requires greater care.
The analysis is simplified by making use of the intraband
commutator relation [14]

[r i ,O]nmk = i(Onmk);k,

(Onmk);k = ∇kOnmk − iOnmk[�nnk − �mmk], (3)

where (Onmk);k is the generalized derivative given in terms
of the Berry connection �nmk = iV −1

UC

∫
UC u∗

nk∇kumkd r with
umk the periodic Bloch part of the wave function and VUC

the unit cell volume. Note that while the ordinary derivative
is sensitive to the choice of k-dependent phase of the band
states, the generalized derivative is invariant. Thus, physically
meaningful quantities should be defined in terms of the
generalized derivative. It is a vectorial quantity and, moreover,
re

cvk = �cvk. It follows from Appendix A that

i�
dρcvk

dt
− Ecvkρcvk

=
{

eF · �cvk −
∑

k′
vcv(k,k′)ρcvk′

}
(fvk − fck)

+
∑

k′

{
vvv(k,k′)(fvk′ − 1) − vcc(k,k′)fck′

}
ρcvk

+ieF · (ρcvk);k, (4)

and

i�
dfck

dt
= eF · (�cvkρvck − �vckρcvk)

+
∑

k′

[
vvc(k,k′)ρcvkρvck′ − vcv(k,k′)ρvckρcvk′

]
+ ieF · (fck);k. (5)

In these expressions, Ecvk = Eck − Evk is the transition
energy and sums over k should be understood as integrals over
the Brillouin zone. Similar relations are found for fvk and
ρvck = ρ∗

cvk. Here, excitonic effects are included via the k-
space Coulomb interaction v(k − k′) and we have introduced

vnm(k,k′) = v(k − k′)Ink,nk′Imk′,mk (6)

with Ink,mk′ the overlap between Bloch parts of the band states
(see Appendix A). In a mean-field approach, screening is not
properly included [17]. Hence, in the numerical application
below, screening will be introduced via a phenomenological
dielectric constant.

The general equations of motion can be iterated to any given
order starting from initial equilibrium conditions. However,
we wish to focus on cold, clean semiconductors with a sizable
band gap, for which one can ignore the field-induced changes
in occupation, i.e., we take fvk = 1 and fck = 0. In this case,
the evolution of the coherence is governed by the simpler
dynamical equation

i�
dρcvk

dt
− Heh[ρcv] = eF · �cvk + ieF · (ρcvk);k, (7)

where we have introduced the electron-hole Hamiltonian Heh

via its action on the coherence

Heh[ρcv] = Ecvkρcvk −
∑

k′
vcv(k,k′)ρcvk′ . (8)

The square bracket notation [· · · ] indicates a functional
dependence leading to a coupling of all k points. We solve this
by iteration using the exciton Green’s function defined in time
domain by the relation

−i�
dG

dt
+ Heh[G] = δk,k′δ(t − t ′). (9)

By Fourier transforming, we find the equivalent frequency
ω domain condition −�ωG

(ω)
k,k′ + Heh[G(ω)] = δk,k′ , which has

a simple solution in the Lehmann spectral representation

G
(ω)
k,k′ =

∑
n

ψ
(n)
cvkψ

(n)∗
cvk′

En − �ω
. (10)

Here, the eigenstates follow from the eigenvalue problem
Heh[ψ (n)] = Enψ

(n) and ψ
(n)
cvk = 〈vk → ck |ψ (n)〉 is the pro-

jection onto a singlet band-to-band transition. This problem
is essentially the Bethe-Salpeter equation for the exciton
eigenstates [17]. Note, however, that exchange terms are
ignored (see Appendix A) and only the direct Coulomb
interaction is retained here.

Throughout, we consider perturbation by a monochro-
matic field F = 1

2 (Fωe−iωt + F∗
ωeiωt ). Now, to zeroth order

ρ
(0)
cvk = 0 and we write the first-order solution as ρ

(1)
cvk =

1
2 (ρ(ω)

cvke
−iωt + ρ

(−ω)
cvk eiωt ). Hence, from Eq. (7),

ρ
(ω)
cvk = −eFω ·

∑
k′

G
(ω)
k,k′�cvk′ ,

ρ
(−ω)
cvk = −eF∗

ω ·
∑

k′
G

(−ω)
k,k′ �cvk′ . (11)

Next, we consider the second-order equation

−i�
dρ

(2)
cvk

dt
+ Heh

[
ρ(2)

cv

] = −ieF · (
ρ

(1)
cvk

)
;k. (12)

In analogy with the first-order problem, we separate into
frequency components. However, at second order we have a
time-independent (dc) term in addition to 2ω terms. Conse-
quently, we write ρ

(2)
cvk = 1

4 (ρ(2ω)
cvk e−2iωt + ρ

(−2ω)
cvk e2iωt + ρ

(dc)
cvk )
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and find

ρ
(2ω)
cvk = −ieFω ·

∑
k′

G
(2ω)
k,k′

(
ρ

(ω)
cvk′

)
;k′ . (13)

Analogous expressions for ρ
(−2ω)
cvk and ρ

(dc)
cvk are readily

obtained. This procedure can be continued to arbitrary order.
Our aim is the second-order nonlinear optical response and, so,
higher-order terms are not needed. To complete the calculation,
we apply the density matrix to compute the macroscopic
induced current. As only contributions from the coherence
contribute, we find generally

j (t) = − e

8π3m

∑
k

{ pvckρcvk + pcvkρvck}. (14)

Inserting the various orders of the coherence, the
current is found to contain a first-order term j (1)(t) =
1
2 ( jωe−iωt + j∗

ωeiωt ) as well as a second-order term j (2)(t) =
1
4 ( j2ωe−2iωt + j∗

2ωe2iωt + j0) and higher. The current oscillat-
ing at 2ω describes the second-harmonic generation process,
whereas the dc term j0 describes optical rectification, also
known as the photogalvanic effect [18]. Applying the above
results we then find jω = σ (1) · Fω and j2ω = σ (2) : Fω Fω as
well as j0 = σ (0) : Fω F∗

ω with

σ (1)(ω) = e2

8π3m

∑
k,k′

pvckG
(ω)
k,k′�cvk′ + (ω → −ω)∗, (15)

σ (2)(ω) = − ie3

8π3m

∑
k,k′,k′′

pvckG
(2ω)
k,k′

(
G

(ω)
k′,k′′

)
;k′�cvk′′

+ (ω → −ω)∗, (16)

σ (0)(ω) = − ie3

8π3m

∑
k,k′,k′′

pvckG
(0)
k,k′

(
G

(ω)
k′,k′′

)
;k′�cvk′′

+ (ω → −ω)∗. (17)

These expressions are the excitonic generalizations of the
independent-particle (free-carrier) expressions in Refs. [13–
15]. It follows that intraband effects manifest themselves via
generalized derivatives of the exciton Green’s function. Note
that because the Hamiltonian is defined in terms of its action on
ρcv , this derivative is to be taken for nm = cv [c.f. Eq. (3)]. We
stress that, in the expressions above, only well-defined matrix
elements, i.e., momenta and Berry connections, appear. To
express these results in terms of exciton matrix elements, we
utilize Eq. (10) and introduce

Pn =
∑

k

ψ
(n)
cvk pvck, �n =

∑
k

ψ
(n)
cvk�vck,

Qmn = i
∑

k

ψ
(m)∗
cvk

(
ψ

(n)
cvk

)
;k. (18)

This allows us to write

σ (1)(ω) = e2

8π3m

∑
n

Pn�
∗
n

En − �ω
+ (ω → −ω)∗, (19)

σ (2)(ω) = − e3

8π3m

∑
m,n

Pm Qmn�
∗
n

(Em − 2�ω)(En − �ω)

+ (ω → −ω)∗, (20)

σ (0)(ω) = − e3

8π3m

∑
m,n

Pm Qmn�
∗
n

Em(En − �ω)
+ (ω → −ω)∗. (21)

Thus, in this formulation, all response functions are given in
terms of exciton matrix elements such as momentum Pn, etc.
For the unperturbed independent-particle Hamiltonian HIP =∑

nk Enk|nk〉〈nk|, the commutator [HIP ,re] = � p/(im) leads
to the rule �cvk = � pcvk/(imEcvk). Similarly, introducing the
many-body interband position and momentum operators Re

and P , the commutator with H0 yields �∗
n = �P∗

n/(imEn).
Finally, the expressions above can be converted into formulas
for the associated susceptibilities via χ (1) = i

ωε0
σ (1) and χ (2) =

i
2ωε0

σ (2):

χ (1)(ω) = e2
�

8π3ε0m2ω

∑
n

Pn P∗
n

En(En − �ω)
+ (ω → −ω)∗,

(22)

χ (2)(ω) = − e3
�

16π3ε0m2ω

∑
m,n

Pm Qmn P∗
n

En(Em − 2�ω)(En − �ω)

+ (ω → −ω)∗. (23)

We note that although the derivation above was restricted
to a single pair of bands, it is straightforward to extend to
multiband systems. Thus, in Appendix B, expressions that
apply to multiband semiconductors are derived. In fact, the
expressions (19)–(21) are still valid provided the exciton
matrix elements are generalized slightly by summing over
pairs of bands [see Eq. (B7)]. Moreover, a purely interband
second-order response, Eq. (B8), is found.

We proceed by deriving approximate expressions for the
free-carrier limit, in which electron-hole interaction is ignored.
This is easily accomplished as, in the independent-particle
limit, G

(ω)
k,k′ = δk,k′/(Ecvk − �ω) and, so,

χ (1)(ω) = e2
�

2

4π3ε0m2

∑
k

pvck pcvk

Ecvk
(
E2

cvk − �2ω2
) , (24)

χ (2)(ω) = 3ie3
�

2

8π3m2ε0

∑
k

pvck( pcvk);k(
E2

cvk − 4�2ω2
)(

E2
cvk − �2ω2

) .

(25)

The expression for χ (2) can be shown to be equivalent to
the ones applied in Refs. [15,19]. Note that the integrands in
Eqs. (24) and (25) are manifestly finite in the dc limit ω → 0.
The excitonic expressions (19) and (20) can be written

σ (1)(ω) = e2
�

8π3im2

∑
n

{
Pn P∗

n

En − �ω
− P∗

n Pn

En + �ω

}
, (26)

σ (2)(ω) = ie3
�

8π3m2

∑
m,n

{
Pm Qmn P∗

n

En(Em − 2�ω)(En − �ω)

− P∗
m Q∗

mn Pn

En(Em + 2�ω)(En + �ω)

}
. (27)

Now, for systems with negligible spin-orbit interaction,
time reversal symmetry means that one can choose phases such
that ψ

(n)
cv,−k = ψ

(n)∗
cvk and pvc,−k = − pcvk. Hence, by shifting

the sums in Eq. (18) from k to −k it is readily shown that,
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with this phase choice, P∗
n Pn = Pn P∗

n and P∗
m Q∗

mn Pn =
Pm Qmn P∗

n and, so, the conductivities vanish in the dc limit. In
turn, this implies that the susceptibilities remain finite. Since
all expressions should be invariant under the choice of phase,
it follows that this conclusion is generally valid. Numerically,
we indeed find finite dc susceptibilities in the example studied
below.

Our results have been derived using perturbations formu-
lated in the length r · F gauge rather than velocity p · A
gauge with A the vector potential. However, an intimately
related issue is concerned with invariance of the responses,
i.e., current j (t) and polarization P(t). Physically, these
are related by j (t) = d P(t)/dt , which leads to the relation
between conductivity and susceptibility applied above. Our
approach is focused on the calculation of the current and then
deriving the associated polarization. However, one could have
chosen a different strategy and computed the susceptibilities
directly rather than through the conductivities. To this end, the
interband polarization could have been found in analogy with
Eq. (14) by replacing velocity with dipole matrix elements,
i.e., P(t) = −e/(8π3)

∑
k {�vckρcvk + �cvkρvck}. Focusing

on the 2ω response and applying the relation between dipole
and momentum matrix elements, this would imply a nonlinear
dipole susceptibility given by

χ
(2)
dipole(ω) = − e3

�
2

8π3ε0m2

∑
m,n

Pm Qmn P∗
n

EmEn(Em − 2�ω)(En − �ω)

+ (ω → −ω)∗. (28)

This expression differs from Eq. (23) in that the energy
Em replaces the two-photon energy 2�ω. Hence, the two are
not identical. In fact, equivalence of the two expressions (in
the independent-particle limit) can be demonstrated [20] but
implicitly relies on the assumption that all summations are over
a complete set of states. Obviously, this assumption is invalid
in the present two-band model. Expanding out the denominator
of Eq. (28) in partial fractions, we find

1

EmEn(Em − 2�ω)(En − �ω)

= 1

2�2ω2

(
1

En − �ω
− 1

En

)(
1

Em − 2�ω
− 1

Em

)
. (29)

For Eq. (23), the result is

1

2�ωEn(Em − 2�ω)(En − �ω)

= 1

2�2ω2

(
1

En − �ω
− 1

En

)(
1

Em − 2�ω

)
. (30)

Thus, the difference between the two is contained in the
last term in the second set of brackets in Eq. (29). Near the 2ω

resonance, this extra term is negligible but it cannot be ignored
generally. Below, we will provide an example illustrating the
difference between the two expressions. Note that the partial
fractions are useful for obtaining formulas that are amenable
to a Lanczos Green’s function evaluation [11]. Thus, Eq. (30)
leads to the convenient form (2�

2ω2)−1(G(ω) − G(0))G(2ω).

FIG. 1. (Color online) Tight-binding band structure of mono-
layer BN. The inset shows the atomic arrangement.

III. APPLICATION TO HEXAGONAL BORON NITRIDE

Several well-converged ab initio studies of the linear
response of h-BN monolayers have been published [21,22].
The local density approximation density functional theory
band gap of approximately 4.4 eV opens to much larger values
of 7.8 eV [21] or 7.37 eV [23] due to GW quasiparticle
corrections. However, electron-hole effects included via the
Bethe-Salpeter equation reduce the position of the lowest
optical absorption peak to around 6.2 eV [21], in good
agreement with experiments on bulk h-BN [24] and exfoliated
nanosheets [25]. We demonstrate here that these features are
nicely captured in a minimal tight-binding plus Bethe-Salpeter
model. Due to the minimal basis and accompanying low com-
putational cost, this type of model is ideally suited for spectra
requiring very dense k-point sampling. In a nearest-neighbor
tight-binding approach, the only adjustable parameters are the
hopping integral γ and the difference between B and N on-site
energies. Taking the middle of the band gap as the energy zero
point, the on-site energies are ±α and the band gap is 2α.
Hence, α = 3.9 eV is adopted in order to match a GW gap of
7.8 eV. Assuming a hopping integral of γ = 2.33 eV obtained
in Ref. [26] by fitting to ab initio results we find the band
structure shown in Fig. 1.

The Coulomb interaction responsible for excitonic effects
is incorporated similarly to the case of MoS2 [11]. Hence, we
take

vcv(k,k′) = − e2Ivk′,vkIck,ck′

8π2εε0|k − k′| exp(−l|k − k′|). (31)

Here, ε is the screening dielectric constant and l is a
length on the order of the sheet thickness representing charge
smearing. Taking the layer thickness to be l = 2 Å we find
that the correct exciton binding energy is obtained assuming
screening of ε = 1.5. Finally, a lattice constant of 2.49 Å
is assumed and line shape broadening is accounted for by
adding a phenomenological imaginary part �� = 0.03 eV to
the optical frequency.

As h-BN is a two-dimensional material, it is convenient
to replace the bulk response formulas derived in the previous
section by sheet quantities. These differ by (i) restricting the
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FIG. 2. (Color online) Real part of the linear optical conductivity
with (blue curve) and without (red curve) excitonic effects.

k-space integrals to a two-dimensional Brillouin zone and (ii)
a factor of 2π reflecting the reduced dimensionality. Since
spin-orbit coupling is neglected, all response functions should
be multiplied by a factor of 2 to account for spin summation.
We use a dense k-vector grid of 100 × 100 points and adopt a
Lanczos approach [11] to the evaluation of response functions.
The linear sheet conductivity σ (1)(ω) is conveniently expressed
in units of the conductance quantum σ0 = e2/4�. The result for
the real (absorptive) part is shown in Fig. 2. The fundamental
exciton leads to a distinct absorption peak around 6.1 eV.
In addition, several higher excitons are visible. Finally, the
continuum absorption above the quasiparticle band gap is
found to be greatly reduced as a consequence of oscillator
strength transferred into bound excitons. Thus, the excitonic
modifications of the linear response are seen to be very
dramatic. These results are in good quantitative agreement with
first-principles calculations in Refs. [10,21–22], in particular,
regarding the location of fundamental and higher exciton
resonances. Also, the position and symmetric line shape of the
fundamental resonance is in excellent agreement with recent
absorption measurements on exfoliated nanosheets [25].

The second-order nonlinear response is described by the
tensors Eqs. (20) and (21). For the hexagonal symmetry with a
mirror symmetry plane containing the x axis the four nonvan-
ishing tensor elements are χ (2)

xxx = −χ (2)
xyy = −χ (2)

yyx = −χ (2)
yxy

and similarly for σ (0). Ignoring for the moment excitonic
effects, we find the independent-electron second-harmonic
generation spectrum in Fig. 3. This can be seen to resemble the
result in Ref. [19]. Note, however, that the Dirac approximation
for the band structure as well as a different tight-binding
parametrization was adopted in Ref. [19], which leads to
noticeable differences. Focusing on the imaginary part, the
main features of the spectrum resemble the linear spectrum to
a large degree. Thus, starting at half the band gap, a step and
a van Hove singularity are found. A similar but inverted set of
features is found at the band gap. In both cases, the similarity
to the linear independent-particle result is clear.

Adding excitons to the nonlinear response leads to modifi-
cations similar to the linear case, as evidenced in Fig. 4. Again,
pronounced features produced by the fundamental exciton are
found, i.e., features at �ω ≈ 6 eV and 2�ω ≈ 6 eV. Moreover,

FIG. 3. (Color online) Second-harmonic nonlinear optical sus-
ceptibility in the independent-particle approximation.

higher excitons are visible as weaker peaks. A significant
difference with respect to the independent-particle result in
Fig. 3 is the relative weight of ω and 2ω resonances. Thus,
in Fig. 3, the ω response in the range 8–10 eV is markedly
weaker than the 2ω response around 4–5 eV. In contrast, the
response due to the fundamental exciton is of similar strength
in the ω and 2ω ranges when excitons are taken into account.
Furthermore, the magnitude of the resonances is greatly
enhanced due to the Coulomb coupling, as demonstrated by the
different scales in Figs. 3 and 4. The spectrum for the absolute
value of the response is seen to agree reasonably well with
the time-dependent Hartree-Fock result in Ref. [10]. Overall,
excitonic effects are clearly found to be indispensable for the
nonlinear response. In the inset, we compare current-based
and dipole-based susceptibilities, i.e., Eqs. (23) and (28). As
expected, the 2ω ranges are basically identical, whereas clear
differences are found at higher energies. These differences only
pertain to the intensity of the peaks, however. The discrepancy
is a consequence of the two-band approximation that breaks
gauge invariance. Thus, the spectra are expected to converge
as more bands are included.

FIG. 4. (Color online) Second-harmonic optical susceptibility
including excitonic effects. Note the different scale compared to
Fig. 3. The inset shows a comparison between absolute values based
on current and dipole approaches.
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IV. SUMMARY

In summary, we have formulated a density matrix approach
to the optical response of two-band semiconductors taking
intraband effects into account rigorously. By iteration, the first-
and second-order responses were derived but arbitrarily high
orders are accessible, in principle. The results, formulated
in terms of exciton Green’s functions, are manifestly free
from unphysical zero-frequency divergences. When applied
to h-BN monolayers it is found that excitons dominate both
linear and nonlinear optical properties. Fingerprints of both
fundamental and higher bound excitons are seen. However,
even above the band gap, Coulomb interactions lead to
significant modifications. The present formalism is readily
extended to describe various nonlinear effects in multiband
materials.
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APPENDIX A: DYNAMICAL EQUATION

The governing equations for the density matrix in the single-
particle basis are conveniently obtained from the Hamiltonian
in second quantization with c,c† fermionic annihilation and
creation operators

H =
∑
kl

hklc
†
l ck + 1

2

∑
klmn

vklmnc
†
kc

†
l cncm, (A1)

in which h is the single-electron part (including dipole
coupling to the electromagnetic field) and v is the Coulomb
potential. This leads to the usual equation of motion [17] for
the density matrix ρji = 〈c†i cj 〉,

i�
dρji

dt
+

∑
l

{hliρjl − hjlρli}

=
∑
lmn

{vlmni〈c†l c†mcncj 〉 − vjlmn〈c†i c†l cmcn〉}. (A2)

We then apply the mean-field approximation 〈c†l c†mcncj 〉 ≈
ρjlρnm − ρnlρjm. The single-particle Hamiltonian has a zero
order and an interaction part h = h0 + hint. The first part
only has diagonal elements, whereas the second (time-
dependent) part has both diagonal and off-diagonal parts.
Also, we introduce the quasiparticle energies En = h0

nn +∑
l {vnlnl − vnlln}δlv . Here, the delta function serves to count

occupied states only. Hence,

i�
dρji

dt
− Ejiρji − 〈j |[hint,ρ]|i〉

=
∑
lmn

{vmlni − vlmni}(ρnl − δmiδnlδlv)ρjm

+
∑
lmn

{vjlmn − vjlnm}(ρnl − δmj δnlδlv)ρmi. (A3)

We now specialize to the case of Bloch states of the form
|nkn〉 = V −1/2unkn

(r)eikn·r . In terms of the Fourier transform
of the Coulomb interaction v(q), the matrix elements become

vabcd =
∑

q

v(q)〈aka|e−iq·r |ckc〉〈bkb|eiq·r |dkd〉. (A4)

We restrict q to the Brillouin zone, which amounts to
neglecting local-field effects. We introduce the Bloch overlaps
Ink′,mk = 〈nk′|ei(k′−k)·r |mk〉 = V −1

UC

∫
UC u∗

nk′umkd r and so

vabcd =
∑

q

v(q)Iaka ,cka+qIbkb,dkb−qδkc,ka+qδkd ,kb−q . (A5)

Normalization is such that Ink,mk = δnm. The density matrix
generally is not diagonal in wave vector index. However, in
the dipole approximation, only the diagonal elements matter.
Having kn = kl is only possible for the first and fourth terms
on the right-hand side of Eq. (A3). The remaining terms are
exchange terms that we neglect. Hence,

i�
dρjik

dt
− Ejikρjik − 〈j k|[hint,ρ]|ik〉

=
∑
lmnk′

v(k − k′)Imk,nk′Ilk′,ik(ρnlk′ − δmiδnlδlv)ρjmk

−
∑
lmnk′

v(k − k′)Ij k,nk′Ilk′,mk(ρnlk′ − δmj δnlδlv)ρmik.

(A6)

Under the assumption that coupling of nearby k points
k and k′ dominate, the fact that Ink,mk = δnm means that
|Ivk,vk′ |,|Ick,ck′ | 
 |Ivk,ck′ |, i.e., intraband overlap dominates
over interband overlap. In this case, taking j = c and i = v

means that for a two-band material

i�
dρcvk

dt
− Ecvkρcvk − 〈ck|[hint,ρ]|vk〉

=
∑

k′
v(k − k′){|Ivk,vk′ |2(ρvvk′ − 1) − |Ick,ck′ |2ρcck′ }ρcvk

+
∑

k′
v(k − k′)Ick,ck′Ivk′,vk(ρcck − ρvvk)ρcvk′ . (A7)

Similarly, for i = j = c,

i�
dρcck

dt
− 〈ck|[hint,ρ]|ck〉

=
∑

k′
v(k − k′){Ick′,ckIvk,vk′ρcvkρvck′

−Ick,ck′Ivk′,vkρvckρcvk′ }. (A8)

APPENDIX B: MULTIBAND EXTENSION

If the restriction to a single pair of valence and conduction
bands (v,c) is lifted, the dynamical equations are clearly more
complicated but still tractable. For a cold, clean multiband
semiconductor, the dominant extension is that the simplified
electron-hole Hamiltonian, Eq. (8), is replaced by the multi-
band expression

Heh[ρ] = Ecvkρcvk −
∑
v′c′k′

v(k − k′)Ick,c′k′Iv′k′,vkρc′v′k′ . (B1)
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In turn, the Green’s function is a larger construction coupling a given pair of bands (v,c) to any other (v′,c′) and is defined by
−�ωG

(ω)
cvk,c′v′k′ + Heh[G(ω)] = δcvk,c′v′k′ , which in the Lehmann representation means that

G
(ω)
cvk,c′v′k′ =

∑
n

ψ
(n)
cvkψ

(n)∗
c′v′k′

En − �ω
. (B2)

The eigenstate problem Heh[ψ (n)] = Enψ
(n) with Heh defined by Eq. (B1) is now the full coupled Bethe-Salpeter equation.

Hence, the results for the two-band case carry over apart from added summations over bands. As a consequence, Eqs. (15) and
(16) now read

σ (1)(ω) = e2

8π3m

∑
cvk,c′v′k′

pvckG
(ω)
cvk,c′v′k′�c′v′k′ + (ω → −ω)∗, (B3)

σ (2)(ω) = − ie3

8π3m

∑
cvk,c′v′k′,c′′v′′k′′

pvckG
(2ω)
cvk,c′v′k′

(
G

(ω)
c′v′k′,c′′v′′k′′

)
;k′�c′′v′′k′′ + (ω → −ω)∗. (B4)

In the multiband case, however, the commutator expression involving the interaction Hamiltonian contains additional terms
and, in general, reads

〈j k|[hint,ρ]|ik〉 = eF ·
∑
l �=j

�j lkρlik − eF ·
∑
l �=i

ρjlk�lik + ieF · (ρjik);k. (B5)

The additional terms mean that we now find a purely interband contribution to the second-order response, which can be written

σ
(2)
inter(ω) = − e3

8π3m

∑
cvk,c′v′k′,c′′v′′k′′

pvckG
(2ω)
cvk,c′v′k′

⎧⎨
⎩

∑
l �=c′

�c′lk′G
(ω)
c′lk′,c′′v′′k′′ −

∑
l �=v′

�lv′k′G
(ω)
lv′k′,c′′v′′k′′

⎫⎬
⎭�c′′v′′k′′ + (ω → −ω)∗. (B6)

Finally, it may be noted that the compact expressions (19)–(21) still hold if one simply adds a sum over band pairs, i.e.,

Pn =
∑
cvk

ψ
(n)
cvk pvck, �n =

∑
cvk

ψ
(n)
cvk�vck, Qmn = i

∑
cvk

ψ
(m)∗
cvk

(
ψ

(n)
cvk

)
;k. (B7)

Similarly, the purely interband response becomes

σ
(2)
inter(ω) = − e3

8π3m

∑
m,n

Pm Rmn�
∗
n

(Em − 2�ω)(En − �ω)
+ (ω → −ω)∗, (B8)

with

Rmn =
∑
cvk

ψ
(m)∗
cvk

⎧⎨
⎩

∑
l �=c

�clkψ
(n)
lvk −

∑
l �=v

�lvkψ
(n)
clk

⎫⎬
⎭. (B9)
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