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Patched Green’s function techniques for two-dimensional systems: Electronic behavior of bubbles
and perforations in graphene
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We present a numerically efficient technique to evaluate the Green’s function for extended two-dimensional
systems without relying on periodic boundary conditions. Different regions of interest, or “patches,” are connected
using self-energy terms which encode the information of the extended parts of the system. The calculation scheme
uses a combination of analytic expressions for the Green’s function of infinite pristine systems and an adaptive
recursive Green’s function technique for the patches. The method allows for an efficient calculation of both local
electronic and transport properties, as well as the inclusion of multiple probes in arbitrary geometries embedded
in extended samples. We apply the patched Green’s function method to evaluate the local densities of states and
transmission properties of graphene systems with two kinds of deviations from the pristine structure: bubbles
and perforations with characteristic dimensions of the order of 10–25 nm, i.e., including hundreds of thousands
of atoms. The strain field induced by a bubble is treated beyond an effective Dirac model, and we demonstrate
the existence of both Friedel-type oscillations arising from the edges of the bubble, as well as pseudo-Landau
levels related to the pseudomagnetic field induced by the nonuniform strain. Second, we compute the transport
properties of a large perforation with atomic positions extracted from a transmission electron microscope image
and show that current vortices may form near the zigzag segments of the perforation.
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I. INTRODUCTION

Following the isolation of graphene a general class of
two-dimensional materials with widely diverse and unique
electrical, mechanical, and optical properties has been re-
alized [1,2]. Two-dimensional materials are almost entirely
surface and are therefore very susceptible to external influences
like direct patterning, [3,4] adsorbate atoms, [5] strain [6],
etc. This variety of ways to alter and control the material
properties opens a huge range of engineering possibilities [7].
In this context, it becomes important to investigate large-scale
disorder or patterning in relation to the electronic properties
of graphene and related two-dimensional materials. From
a theoretical perspective, several methods are available [8].
Typically, the electronic structure of the system is described
with a tight-binding-type Hamiltonian and a popular approach
is then to construct the entire system in a piecewise manner
using recursive Green’s functions (RGFs) [9]. In this way,
we can extract the necessary terms for calculating physical
quantities of interest. The RGF method is best suited for
systems which are either finite or periodic in one dimension. It
is frequently used for modeling transport, where self-energies
calculated using recursive techniques are used to attach semi-
infinite pristine leads to either side of a finite device region [10].
Alternatively, an efficient approach to large disordered systems
is the real-space Kubo-Greenwood approach [11]. However,
this method cannot include open boundary conditions and can
only obtain average system quantities, as opposed to local
electronic and transport properties.

In the most common formulation, the RGF method treats
(quasi) one-dimensional systems with only two leads. Al-
though variants of the method can be used for arbitrary geome-
tries and multiple leads [12–14], the method remains limited
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to finite-width or periodic systems. Consequently, it cannot
describe local and nonperiodic perturbations, or pointlike
probes similar to those considered experimentally [15–17]. An
extension of recursive techniques, to allow efficient treatment
of local properties in systems without periodicity or finite sizes,
would allow for easier theoretical investigation of systems
which are computationally very expensive, or completely out
of reach, using existing methods.

In this paper, we develop a Green’s function (GF) method
which is able to efficiently treat large and finite-sized “patches”
embedded in an extended system, as shown in Fig. 1.
The method combines an analytical formulation of the GFs
describing a pristine system [18,19] with an adaptive RGF
method to describe the patches. It allows for calculation of both
local electronic and transport properties and for the inclusion
of multiple leads and arbitrary geometries embedded within
an extended sample.

This patched GF method exploits an efficient calculation of
the GF for an infinite pristine system using complex contour
techniques. Using this GF, an open-boundary self-energy term
can be included in the device Hamiltonian to describe its
connection to an extended sample. The device region it-
self, containing nanostructures, (non)uniform magnetic fields,
and/or leads, is then treated with an adaptive recursive method.
We demonstrate the formulation using graphene, but it is
generally applicable to all (quasi) two-dimensional structures
where the GF for the infinite pristine system can be determined.
Consequently, the patched GF method is a versatile tool
for efficient investigation of nonperiodic nanostructures in
extended two-dimensional systems.

The rest of the paper is outlined as follows. The general
formalism is developed in Sec. II A by calculating the open
boundary self-energy from the pristine GF. In Sec. II B we
use graphene as an example to show the calculation of the
pristine GF, while Sec. II C discusses the adaptive recursive
method used to treat the device when including the boundary
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FIG. 1. (Color online) The left panel shows a schematic of a
computational setup containing a finite device ‘patch,” described by
HD , embedded within an extended system described by the self-
energy �B . The right panel shows a computational setup containing
several device patches of interest.

self-energy. In Sec. III we use the developed method to study
the local density of states of a graphene sample under the
influence of a local strain field. As a result, we can compare
local density of state (LDOS) maps with pseudomagnetic field
distributions. In this way, we show the existence of Friedel-
type oscillations along with pseudomagnetic field effects in the
LDOS. Finally, in Sec. IV, we use the patched GF technique to
demonstrate the existence of vortexlike current patterns in the
presence of a perforation within an extended graphene sheet.

II. METHOD

We consider the computational setup schematically shown
in the left panel of Fig. 1, where a device region is embedded
within an extended two-dimensional system. This setup
ensures that we are not including edge effects due to the
finite-size of the simulation domain [20]. The device region is
described by a Hamiltonian, H , which may include disorder,
deformations, mean-field terms, (non)uniform magnetic fields
or leads, etc. This device region is embedded into an extended
system by applying a self-energy term, �B . To consider the
setup in Fig. 1, we need two things. First, we need to construct
�B to describe the extended part of the system and, second, we
need an efficient way to describe the device region while taking
�B into account. Furthermore, the treatment of the device

should be able to consider arbitrary geometries, including
mutually disconnected patches within the extended system,
as shown in the right panel of Fig. 1.

We describe the method in three steps:
(A) derivation of the boundary self-energy term, �B , in

terms of the pristine lattice GFs;
(B) calculation of the real-space GF needed in the self-

energy calculation. (we use graphene as an example);
(C) implementation of an adaptive RGF method to build

the device region(s) efficiently while including the self-energy
term(s) �B .

A. Boundary self-energy

To construct the boundary self-energy describing the
extended region in Fig. 1, we consider the simple graphene
example in Fig. 2(a). Here a central device region, indicated
by the dashed square, is embedded in an extended sheet. In
this example both the extended area and the device region are
assumed to be graphene based, but the following arguments
are general to any two-dimensional material. We consider a
division of the system into two parts: sites in the device (D) or
sites in the extended sheet region. Furthermore, we subdivide
the extended sheet into boundary sites (B), which are indicated
by blue in Fig. 2 and have a nonzero Hamiltonian element
coupling them to the device region, or “sheet” sites, which
do not couple to the device region. Within a nearest-neighbor
tight-binding Hamiltonian, the boundary sites in Fig. 2(a) are
shown by blue symbols and have nonzero couplings to the
device sites indicated by red symbols. We can now write the
Hamiltonian for the entire system, in block matrix form, as

(1)

where the light shaded part of Eq. (1) represents an infinite
Hamiltonian. The connections between device and sheet (i.e.,
between the red and blue symbol sites) are contained in the
off-diagonal blocks V D,B and V B,D .

FIG. 2. (Color online) (a) The desired device region, indicated by the dashed square, embedded within an extended system. Red symbols
are the edge of the device and blue symbols indicate sites in the surrounding sheet that couples to the device. We obtain the disconnected system
discussed in the text by removing the couplings that cross the dashed line. (b) The corresponding pristine system. Again the disconnected
system is obtained by removing couplings along the dashed line. (c) How the effect of the extended sheet on the device region is taken into
account by the self-energy; see Eq. (4).
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We aim to replace the infinite Hamiltonian H with a finite
effective Hamiltonian, Heff = HD,D + �B , which takes into
account the extended sheet using a self-energy term �B .
To do this, we consider the connected system in panel (a)
of Fig. 2 and a disconnected system formed by removing
the Hamiltonian elements V D,B and V B,D , corresponding
to removing couplings crossing the dashed line in Fig. 2(a).
The GFs of the connected (G(con)) and disconnected (G(dis))
systems can be related via the Dyson equation, and in particular
we can write the GF of the connected device region as

G(con)
D,D = G(dis)

D,D + G(dis)
D,DV D,B G(con)

B,D . (2)

Applying the Dyson equation again to obtain G(con)
B,D and

inserting this into Eq. (2) allows us to simplify

G(con)
D,D = (E1 − HD,D − �B)−1, (3)

where the self-energy term is given by

�B = V D,B G(dis)
B,B V B,D. (4)

We note that the self-energy in Eq. (4) is independent of the
considered device and depends only on GF matrix elements
connecting sites in the pristine surrounding “frame” that
remains when the device is removed from the full system. We
take advantage of this to temporarily replace the device with
a corresponding pristine region of the same size, as shown in
panel (b) of Fig. 2. The self-energy required to incorporate the
finite pristine region into an infinite, pristine sheet is the same
self-energy, �B , that is required in Eq. (3). We can therefore
write the required GF matrix, G(dis)

B,B , in terms of the GF of the
infinite pristine sheet, G(0). These are related using the Dyson
equation with a perturbation −V D,B ,

G(dis)
B,B = (

1 + G(0)
B,DV D,B

)−1
G(0)

B,B. (5)

The advantage of writing the self-energy in terms of the pristine
sheet GFs, G(0)

B,B and G(0)
B,D , becomes clear in the next section,

where we demonstrate an efficient method to calculate these
two terms. It is worth noting that G(0)

B,D only needs to be
calculated for the sites in D which connect to sites in B. These
sites are indicated by red in Fig. 2 and are where the self-energy
terms need to be added, as shown in panel (c). In this way, the
computations only involve matrices corresponding to the edge
of the device and not the size of the full device region as
straightforward inversion would require.

The calculation scheme can be summarized as follows.
(1) Calculate G(0)

B,B and G(0)
B,D using the methods outlined

in Sec. II B.
(2) Calculate �B from Eqs. (4) and (5).
(3) The finite GF for the device region, G(con)

D,D , is given by
Eq. (3) and can be treated using an adaptive RGF method; see
Sec. II C.

We note that this approach does not require a specific
geometric shape of the device, nor does the device region
need to be contiguous. We can treat different nonconnected
patches in an extended system, as shown in the right panel
of Fig. 1, by extending the set D to include sites inside
each patch and similarly expanding B to include sites at the
boundary of each patch. The method presented in this section
is applicable to any system where the connected, pristine GFs

are easily obtainable, as demonstrated in the next section using
a tight-binding description of graphene as an example.

B. Real-space graphene Green’s function

We now turn to the calculation of the real-space GF of the
pristine system, which is needed to calculate the self-energy,
�B , in Eqs. (4) and (5). The approach required to calculate this
quantity is demonstrated below for the case of a graphene sheet
described with a nearest-neighbor tight-binding Hamiltonian,
but is easily generalized for other cases.

This Hamiltonian is given by

H =
∑
{i,j}

t ĉ
†
i ĉj , (6)

where the sum {i,j} runs over all nearest-neighbor pairs and the
carbon-carbon hopping integral is t ≈ −2.7 eV. The graphene
hexagonal lattice can be split into two triangular sublattices,
which we denote A and B, and neighboring sites reside on
opposite sublattices to each other. Using Bloch functions, the
Hamiltonian can be rewritten in reciprocal space as [8]

H k = t

(
0 f (k)

f ∗(k) 0

)
, (7)

where the matrix form arises from sublattice indexing within
a two-atom unit cell and we have used the definition f (k) =
1 + eik·a1 + eik·a2 , with the lattice vectors a1 = a0(

√
3,3)/2

and a2 = a0(−√
3,3)/2 and a0 the carbon-carbon distance.

With this definition of the unit vectors we have the armchair
direction along the y axis (and zigzag along the x axis).

The eigenenergies and eigenstates of the system are easily
obtained from this form of the Hamiltonian, and transforming
back to real space allows us to write the desired Green’s
function between sites i and j as [19,21]

G0
ij (z) = 1

�BZ

∫
d2k

Nij (z,k)eik·(rj −r i )

z2 − t2|f (k)|2 , (8)

where z = E + i0+ is the energy, �BZ is the area of the first
Brillouin zone. The position of the unit cell containing site i is
denoted by r i = mi a1 + ni a2, with mi and ni being integers.
Finally, we use the definition Nij (z,k) = z, when i and j are
on the same sublattice and Nij (z,k) = tf (k) if i is on the A
sublattice and j is on the B sublattice and Nij (z,k) = tf ∗(k)
when i is on B and j is on A.

To simplify the notation, we introduce the dimension-
less k vectors kA = 3kya0/2 and kZ = √

3kxa0/2 such that
f (kA,kZ) = 1 + 2 cos(kZ)eikA , and write the separation vector
in terms of the lattice vectors r = rj − r i = ma1 + na2.
Inserting this into Eq. (8) gives

G0(z,r) = 1

2π2

∫
dkA

∫
dkZNij (z,kA,kZ)

× eikA(m+n)+ikZ (m−n)

z2 − t2[1 + 4 cos2(kZ) + 4 cos(kA) cos(kZ)]
.

(9)

Equation (9) can be solved using a two-dimensional numerical
integration, but as we require Eq. (9) for each GF element
individually, we wish to increase the performance by doing one
integration analytically using complex contour techniques.
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Following the approach of Ref. [19], we use kA as a complex
variable and consider the poles, q, of the denominator

q = cos−1

[ z2

t2 − 1 − 4 cos2(kZ)

4 cos(kZ)

]
. (10)

The sign of the pole must be selected carefully to ensure that it
lies within the integration contour, i.e., Im(q) > 0, for contours
in the positive half plane corresponding to the situation m +
n � 0. Care must also be taken with the additional phase terms
that arise for opposite sublattice GFs.

Using the residue theorem and integrating over a rectangu-
lar Brillouin zone, kA ∈ [−π ; π ] and kZ ∈ [−π/2; π/2], we
finally reduce Eq. (9) to

G0(z,r) = i

4πt2

∫ π
2

− π
2

dkZ

Nij (z,q,kZ)eiq(m+n)+ikZ (m−n)

cos(kZ) sin(q)
,

(11)

with q given by Eq. (10). A similar expression to Eq. (11) can
be derived when using kZ as first integration variable [19]. The
above derivation is based upon a nearest-neighbor model, but
can be generalized to include, for example, second-nearest-
neighbor terms [22], uniaxial strains [23], or any form of
rescaled graphene models [24].

We can now use Eq. (11) to calculate the elements of the
required GFs, G(0)

B,B and G(0)
B,D , defined in Sec. II A. In this

way, Eq. (11) can be used to fill up the elements of the desired
matrices one at a time. Since we need GF matrices of size NB ×
NB and NB × ND , where ND and NB are the number of sites at
the edge of the device region and in the region B, respectively, it
could seem very ineffective to calculate one element at a time.
However, the total number of GF elements to be calculated
is greatly reduced by the symmetries of the pristine graphene
lattice. The lattice itself is 6-fold symmetric and each of these 6
identical wedges is, in turn, mirror symmetric, resulting in a 12-
fold degeneracy of the GFs indexed by site separation vectors.
Additionally, many of the required elements in G(0)

B,B and G(0)
B,D

are identical. For instance, the on-site and nearest-neighbor
GF element appear many times, but only need to be calculated
once. Taking the device region in Fig. 2 as an example we have
ND = NB = 20, yielding 400 individual elements for a brute-
force calculation. Instead, using symmetries and duplicates, we
only need to calculate 38 and 42 elements when determining

G(con)
B,B and G(con)

B,D , respectively. The reduction becomes more
significant for larger systems, as we generally only need to
add the GF elements corresponding to the longest couplings.
Consequently, only a small percentage of the GF elements need
to be calculated individually and their values for frequently
used separations and energies can be stored or reused to enable
extremely fast calculation of the required self-energies.

C. Adaptive recursion for device region

In this section we consider the device region where the
boundary self-energy can be added at the edge. The full GF
of the device region is given by GD = (E1 − HD − �B)−1,
where we have simplified the notation from Eq. (3). From this
GF both transport and local properties can be obtained. How-
ever, for most purposes we do not require every element of the
GF matrix element in the device region, and so to avoid a time-
consuming, full-matrix inversion, various recursive or other
decomposition methods are often applied [9,14,20,25–32].

This section outlines an adaptive recursion method which
efficiently includes the boundary self-energy as well as an
arbitrary device region shape and configuration (and number)
of leads. Alternative approaches have been developed to treat
arbitrarily shaped regions with multiple leads [12,13,30].
These so-called knitting algorithms add single sites at a
time. They rely on a complicated categorizing of sites into
different intermediate updating blocks, making the theory
and implementation cumbersome. Hence, we use an approach
similar to the ones in Refs. [25–27] and employ an adaptive
partitioning of the Hamiltonian matrix in order to bring it into
the desired tridiagonal form suitable for recursive methods.

Calculating physical properties generally requires certain
GFs connecting a specific set of sites in the device region.
These sites of interest, for example, could be sites where we
want to introduce defects, or couple to probes for transport
calculations, or measure properties like the LDOSs. We focus
first on the general partitioning process and then demonstrate
how it can be quickly modified to account for the edge self-
energy terms. We begin by placing all these sites of interest
into recursive cell 1, as shown by the red sites in Fig. 3. We
emphasize that the cells in this process are not of a fixed size
and may consist of arbitrary sites which are not necessarily
connected. Cell 2 is determined by selecting all the remaining

cell 1 cell 2 cell 3 cell 4

FIG. 3. (Color online) The partitioning of a small graphene sample where all sites of interest are located in cell 1. Cell 2 contains all the
sites coupling to cell 1 but which are not themselves part of cell 1. Likewise, cell 3 comprises the sites coupling to cell 2, and so on. The
red sites are assigned to the current cell and the lines indicate the sites still to be assigned. The previous cell and all sites already added are
indicated by gray and white, respectively. The recursive sweep starting at the final cell and ending in cell 1, indicated by black arrows, gives the
GFs connecting all sites of interest. We can also employ a second recursive sweep, as indicated by the white arrows, to obtain local properties
everywhere within the device region.
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unpartitioned sites which couple directly to sites in cell 1 via a
nonzero Hamiltonian matrix element. In the example in Fig. 3,
this consists of nearest-neighbor sites of those in cell 1, which
are not themselves in cell 1. This process is repeated until
all sites in the device region have been allocated a cell and
is demonstrated schematically in the panels of Fig. 3, where
red sites indicate the current cell and dark gray or white sites
indicate sites added to the previous cell or to earlier cells,
respectively.

With the resultant block tridiagonal Hamiltonian, we can
now employ the usual recursive algorithm, starting from cell
n = N , so that the final step yields the required GF sites in cell
n = 1. These terms can then be used to calculate observable
quantities like transmission, LDOS, etc. Afterwards a reverse
recursive sweep from n = 1 to n = N can be implemented to
efficiently map local quantities like bond currents or LDOS
everywhere within the device region [9]. For completeness the
full recursive method is summarized in Appendix A including
the reverse sweep. We emphasize that the presented method
is not unique to graphene systems, but can be employed to
arbitrary tight-binding-like models.

The method offers increased flexibility compared to the
standard left-right recursive approach [9], but keeps the
operation count scaling Ncell × M3, where Ncell is the number
of cells and M is the number of sites in each cell. We note that
the cell-size fluctuation is greater within the adaptive approach,
so that the total operation count will also be higher by a
factor dependent on the device aspect ratio and circumference.
However, the larger number of matrix elements returned allow
the system to be connected to multiple probes or as a patch in
an extended system, options not available using a standard
recursive sweep. The use of multiple patches within our
framework, as illustrated in Fig. 1, can also significantly reduce
the percentage of the system that needs to be built recursively.
This removes the need for computationally expensive buffer
zones, or k-space averaging techniques, that standard RGF
techniques would require in attempting calculations of similar
systems.

Including the boundary self-energy

We now return to the specific case at hand where the
recursive method outlined above needs to be adapted carefully
to take account of the boundary self-energy. In general, �B

is a non-Hermitian dense matrix connecting all edge sites of
the device region. Therefore, it is essential to assign all edge
sites to the same cell. This principle is shown in Fig. 4. If cell

nn - 1 n + 1

FIG. 4. (Color online) An example of the partitioning when the
cell n − 1 is connected to the edge, and we need to include the
boundary self-energy, �B . In this case, all edge sites and self-energy
terms are included in cell n. The symbols are similar to those in Fig. 3.

n − 1 contains sites which connect to an edge site, then cell
n must contain not only the edge sites directly connecting to
cell n − 1, but also all other edge sites, as these are connected
to each other via �B . In this way, the cell, n + 1, must then
contain all the sites connecting to cell n, i.e., also connecting
to the edge, but not included in cell n. The full cell partitioning
algorithm, including this step, is given in Appendix A.

III. INHOMOGENEOUS STRAIN FIELDS
IN GRAPHENE BUBBLES

In this section, we employ the patched GF method to a
locally strained graphene system, demonstrating how it can
prove to be a useful tool in investigating local properties
of nonperiodic nanostructures in extended two-dimensional
systems.

Strain engineering has been proposed as a method to
manipulate the electronic, optical, and magnetic properties
of graphene [23,33–46]. It is based on the close relation
between the structural and electronic properties of graphene.
The application of strain can lead to effects like band-gap
formation [47], transport gaps [33], and pseudomagnetic fields
(PMFs) [34–36].

Uniaxial or isotropic strain will not produce PMFs, although
it has been shown to shift the Dirac cone of graphene and
induce additional features in the Raman signal [48]. On the
other hand, inhomogeneous strain fields can introduce PMFs.
In this case, the altered tight-binding hoppings mimic the role
of a gauge field in the low-energy effective Dirac model of
graphene [49,50]. For example, Guinea et al. [34] demon-
strated that nearly homogeneous PMFs can be generated by
applying triaxial strain. One of the most striking consequences
of homogeneous PMFs is the appearance of a Landau-like
quantization [34,41]. Scanning tunneling spectroscopy on
bubblelike deformations see this quantization, where the
observed pseudo-Landau levels correspond to PMFs stronger
than 300 T [38,51].

Deformations can be induced in graphene samples by differ-
ent techniques like pressurizing suspended graphene [36,52]
or by exploiting the thermal expansion coefficients of different
substrates [38]. As a result, introducing nonuniform strain
distributions at the nanoscale is a promising way of realizing
strain engineering. The standard theoretical approach to treat
strain effects employs continuum mechanics to obtain the
strain field. Several studies improve the accuracy by replacing
the continuum mechanics with classical molecular dynamics
simulations [6,36,37]. The strain field can then be coupled to
an effective Dirac model of graphene to study the generation
of PMFs in various geometries. In most studies, only the
PMF distribution is considered as opposed to experimentally
observable quantities like LDOSs. The framework presented
in Sec. II enables us to treat the effect of strain on the LDOS
directly from a tight-binding Hamiltonian. Consequently, we
are now able to describe a single bubble in an extended
system without applying periodic boundary conditions which
may introduce interactions between neighboring bubbles. The
dual recursive sweep then allows for efficient calculation of
local properties everywhere in the device region surrounding
a bubble, enabling us to investigate spatial variations in
real-space LDOS maps. In this section we only treat one
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nanostructure, but the patched GF technique efficiently handles
several spatially separated nanostructures, as the separation is
added very efficiently through the self-energy term.

To account for strain within a tight-binding approach,
we modify the hopping parameters [39,43,46]. The nearest-
neighbor hopping in Eq. (6) between sites i and j is given by
the new distance, dij , between the sites,

tij = te
−β(

dij

a0
−1)

, (12)

where the coefficient β = −∂lnt/∂lna0 ≈ 3.37 [43]. We treat
the deformation problem by applying an analytical displace-
ment profile [u(x,y),z(x,y)] matched against experimental
data for pressurized suspended graphene [53]. Here u(x,y)
and z(x,y) are the in-plane and vertical displacements,
respectively, which are induced by the applied strain. For a
rotationally symmetric aperture with radius R, these are given,
in spherical coordinates (r,θ ), as

z(r,θ ) = h0

(
1 − r2

R2

)
, (13a)

u(r,θ ) = u0
r

R

(
1 − r

R

)
, (13b)

for r < R. Here h0 is the maximal height of the bubble and
u0 = 1.136h2

0/R is a constant relating the out-of-plane and
in-plane deformations [53]. We note that this profile gives rise
to a sharp edge at r = R, and many of the features we discuss
below emerge from the strongly clamped nature of this bubble
type.

As shown in B, rotational symmetric strain profiles give
rise to threefold symmetric PMFs in the effective Dirac model.
This is shown in Fig. 5(a) for the strain profile considered in
Eq. (13). As discussed in earlier studies [39,46,54], we get an
asymmetric sublattice occupancy such that the LDOS of each
sublattice has a threefold symmetric distribution following the
PMF while rotated 60◦ compared to the opposite sublattice. In
all calculations below, we therefore show only one sublattice
because the result for the opposite sublattice can be obtained
by a 60◦ rotation and the total pattern is a superposition of
both [35,40].

Comparing the PMF distribution in Fig. 5(a) with the
calculated LDOS maps at different energies in Figs. 5(b)–5(d)
for a bubble of radius R = 10 nm and height h0 = 3 nm,
we immediately notice that the threefold symmetry is also
present in the LDOS maps. However, the spatial LDOS
maps have significant additional details compared to the PMF
distribution.

In Fig. 6 we calculate the energy-dependent LDOS at the
positions indicated by symbols (square, circle and triangle)
in Fig. 5. We first consider the average of the LDOS within
the “slice” containing the symbols, shown by the bottom (red)
curve in Fig. 6. Two distinct oscillation types are observed,
and we argue that these can be divided into Friedel-type
and PMF-induced features. At high energies in particular
we notice regularly spaced oscillations with an approximate
period of �vF π/2R. These are consistent with Friedel-type
oscillations related to the size of the structure and emerging
from interferences between electrons scattered at opposite
sides of the bubble. An exact treatment needs to take into

R(r, θ)

(a)

E1

(b)

E2

(c)

E3

(d)

min maxLDOS

FIG. 5. (Color online) (a) The PMF distribution calculated using
the strain distribution in Eq. (13), dark being negative field and light
being positive. (b)–(d) Real-space LDOS maps for the A sublattice
taken at the energies E1 = 0.06|t |, E2 = 0.089|t |, and E3 = 0.23|t |,
corresponding to energies of the first two pseudo-Landau levels
and an energy dominated by Friedel-type oscillations, respectively.
The energies and the symbols correspond the ones used in Fig. 6.
Sublattice B is similar and is obtained by rotating 60◦. The scale bar
is 5 nm.

account the renormalized Fermi velocity, vF , due to the average
change in bond length [55]. At lower energies we observe
distinct peaks which are not equally spaced (the first two appear
at E1 and E2). We show that these are due to pseudomagnetic
effects and we refer to them as pseudo-Landau levels.

Besides the Friedel oscillation associated with the bubble
radius, we also have similar oscillations associated with the
distances to different edges of the bubble. These features are
highly position dependent and explain the differences between
the three single-position curves in Fig. 6. When considering the
average, these position-dependent oscillations are washed out

E1 E2 E3

Average

0 0.1 0.2 0.3
Energy / |t|

L
D

O
S

FIG. 6. (Color online) The LDOS as a function of energy for the
three positions indicated in Fig. 5 and for the average of the “slice” of
the bubble region containing the symbols. The dashed lines indicate
the LDOS without the bubble. The curves are shifted with respect to
each other to increase visibility.
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(bottom curve in Fig. 6), leaving only the oscillation dependent
on the structure size. However, at individual positions these
oscillations can have a considerable impact. Returning to the
individual position STS curves in Fig. 6, we note that the peak
at E2 is only dominant for the points indicated by the square
and the triangle. It is suppressed by Friedel-type interferences
at the circle point, which is also clear from the LDOS map in
Fig. 5(c).

The amplitude of the Friedel-type oscillations is determined
by the strength of scattering near the bubble edges. The
clamped edge implied by the strength profile in Eq. (13) gives
rise to significant strain fields along this edge, leading to a
sharp, strong perturbation. More realistic profiles calculated
from molecular dynamics also indicate strong perturbations
near the edges of clamped bubbles [36]. Our results indicate
that edge scattering effects may significantly affect LDOS
behavior in clamped bubble systems and even mask PMF-
induced features.

To treat the oscillations due to the feature size and edge
sharpness in more detail, we calculate the LDOS for an
artificial system only taking into account the strain field along
a small ring around the edge; see Fig. 7 (dashed red line).
In this way, only Friedel-type features are expected within the
structure. If we compare to the full calculation (solid black line
in Fig. 7), we notice that the oscillations at higher energies are
present in both calculations, whereas the sharp peaks are only
present in the full calculation. This confirms the Friedel nature
of the higher energy oscillations and suggests that the lower
energy peaks are due to an alternative mechanism. To confirm
that the sharp peaks are due to pseudomagnetic effects, we
compare the peak positions to the standard form expected for
Landau levels in graphene En = sgn(n)

√
2e0�v2

F Bsn, where
e0 is the electron charge, Bs is the magnetic field, and n is the
peak number [8]. The peaks labeled 1–4 in Fig. 7 display the√

n-dependence characteristic of Landau levels in graphene,
as shown in the inset of Fig. 7. The size of the PMF can
furthermore be inferred to be Bs ∼ 30 T from the inset.

1 2 3 4

0 0.1 0.2 0.3
Energy / |t|

Δ
L
D

O
S

0 1 2
0

0.05

0.1

√
n

En

FIG. 7. (Color online) The difference in LDOS as a function of
energy for the point indicated with a triangle on Fig. 5. We show both
the full calculation (solid line) and an artificial system containing only
the perturbation for a small region at the edge of the bubble (dashed
line). We adjust the average hopping constant in the calculation of
the artificial system to match the full calculation. (Inset) The peak
energies 1–4 as a function of

√
n, where n is the peak number.

To conclude, we discussed how the features in the LDOS
spectra of clamped graphene bubbles can be explained by a
combination of size-dependent scattering and PMF-induced
effects like pseudo-Landau quantization. Significant strain
fields near the edge of the structure give rise to strong Friedel-
type oscillations in the LDOS and these oscillations envelop
the effect of a PMF. We must therefore be careful to distinguish
between the two types of oscillations when investigating the
electronic effects of PMFs induced by inhomogeneous strain
fields.

IV. VORTEX CURRENTS NEAR PERFORATIONS

In this section we investigate local transport properties near
antidots (i.e., perforations) in a graphene sheet. Periodic arrays
of antidots have been studied as a way to open a band gap in
graphene [56–58] or to obtain waveguiding effects [59,60].
Furthermore, a single perforation in a graphene sheet has
been considered as a nanopore for DNA sensing [61,62] and
recent studies in magnetic fields have shown the Aharonov-
Bohm effect appearing in conducting edge states around a
nanohole [63].

Several studies show that the electronic structure of antidots
is closely related to the exact edge geometry [56,60,64]. Exper-
imental fabrication techniques like block copolymer [3,4,65]
or electron beam lithography [66–68] inevitably lead to disor-
der and imperfect edges. However, it may be possible to control
the edge geometry of the antidot by heat treatment [67,69] or
selective etching [68,70].

Motivated by the interest in how current flows in antidot
systems, we apply the patched GF method to a single
perforation in a graphene sheet. The method allows us to study
the perforation with no influence from periodic repetition or
finite sample size. Additionally, the combination of recursive
methods and a boundary self-energy allows for the investi-
gation of antidot sizes realizable experimentally [3,62,71].
In fact, we consider both an example antidot with perfect
edges and an exact structure found from high-resolution
transmission electron microscope (TEM) images using pattern
recognition [72,73].

To investigate current on the nanoscale, recent experiments
have realized multiple STM systems [15,16,74,75]. These
allow for individual manipulation of several STM tips in order
to make electrical contact to the sample near the consid-
ered nanostructure. Theoretically, we previously considered
multiple STM setups allowing for both fixed and scanning
probes [18,64]. The method presented here allows for not only
transmission calculations but also calculation of local elec-
tronic and transport properties in the presence of multiple point
probes. At the same time large separations between the differ-
ent probes and/or nanostructures are easily included as addi-
tional separation is achieved in a very computationally efficient
manner through the self-energy term connecting multiple
patches. The combination of large spatial separation between
features, while still enabling calculation of local electronic and
transport properties, can prove to be a useful tool in investigat-
ing extended two-dimensional systems where we take special
interest in a particular region of the extended sample.

In order to consider transmissions and current patterns,
we add leads to the system through inclusion of a lead
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FIG. 8. (Color online) (a) The transmission as a function of
energy for a dual probe setup with an antidot in between the probes as
schematically shown in the inset. The distance between the probes is
200 nm and the antidot with purely zigzag edges has side length
R = 48a0 ∼ 6.8 nm. The shaded area corresponds to the LDOS
around the edge of the antidot.

self-energy term, �L
ij = V L

is g
s(r i − rj )V L

sj , where V L
is is the

coupling element between the device site i and the lead.
To model the structureless lead, we use the surface GF of
a single atomic chain, because this has a constant DOS in
the considered energy range. The distance dependence in
gs(r i − rj ) is necessary to avoid an unphysical coupling
between different lattice sites via the lead. We therefore add a
1/|r i − rj | dependence for the off-diagonal terms [76], where
r i �= rj , as appropriate for a structureless three-dimensional
free electron gas [77].

First, we consider a zigzag-edged antidot with side length
R = 48a ∼ 12 nm, where a is the length of the graphene
unit cell and a = √

3a0 = 2.46 Å. This is comparable to
experimental sizes where sub-20-nm feature sizes have been
reported [3,4,62,65]. The antidot is between two probes placed
200 nm apart, as shown schematically in the inset of Fig. 8(a).
The main panel of Fig. 8(a) shows the transmission as a
function of energy for this dual point probe setup. We note the
distinct transmission peaks. As explained in Ref. [64], these
peaks are related to localized states along the zigzag edges.
As a consequence, we notice the correspondence between the
peaks in the transmission and the peaks in the LDOS around
the edge; see the shaded area in Fig. 8(a).

Next, we calculate the bond currents from the top lead. The
bond current between sites i and j from lead L are calculated,
as explained in Appendix A, by JL

ij = −Hij Im[Ga�LGr ]ij /�,
where Hij is the Hamiltonian matrix element connecting sites
i and j . The bond currents around the zigzag antidot for the
energies indicated in Fig. 8(a) are shown in Figs. 8(b) and 8(c).
In this way, we see that the transmission dips are related to
vortexlike current paths. These vortex paths create a larger
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(b)
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nm
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(a)

(c) (d)

FIG. 9. (Color online) An actual perforation is obtained from
high-resolution TEM images through pattern recognition and we
consider the vortexlike current paths forming around the perforation
as certain energies. (a) The structure of the perforation as well as
an indication of the probe position (in the actual calculations the
probes are 200 nm apart). The indicated areas correspond to the
magnifications in (c) and (d). (b) The transmission for the dual
probe setup. The shaded area indicates the average LDOS around
the edge of the antidot. Furthermore, the energies I and II correspond
to the energies used in (c) and (d), respectively. (c),(d) Bond current
maps taken at the energies I and II, respectively, and shown at the
positions indicated on (a).

“effective size” for the antidot at this energy, characterized by
a region around the antidot avoided by the current paths. On
the other hand, at the transmission peaks the current passes
near the antidot edge.

The antidot considered in Fig. 8, although of realistic
size, is an idealization, because experimental perforations will
inevitably contain imperfections. To consider a more realistic
case, we turn to a perforation observed in experimental TEM
images. Using pattern recognition [72,73] the positions of the
individual carbon atoms are obtained from high-resolution
TEM images (see Fig. 9 of Ref. [73]). Pristine graphene is
added around the experimentally obtained perforation to obtain
the system shown in Fig. 9(a). From the transmission [see
Fig. 9(b)], we notice that peaks are still present, but broadened
by the disorder. Considering the two energies I and II in
Fig. 9(b) and comparing their spatial current maps, we find
that certain positions around the antidot are responsible for
the additional backscattering causing the transmission dips.
Dip I corresponds to a vortex pattern at the left side of the
antidot [see Fig. 9(c)], whereas the dip at II is caused by a
vortex pattern at the bottom of the antidot [see Fig. 9(d)].
This result suggests that electrons at different energies see a
different effective perforation size and shape and are scattered
accordingly.

V. CONCLUSION

We have expanded the standard RGF method to calculate
local and transport properties enabling calculations in extended
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nonperiodic systems. We exploit an efficient calculation of the
pristine two-dimensional GF using complex contour methods.
Once calculated, the pristine GFs are used to determine a
boundary self-energy term describing the extended system. In
this way, we can treat a finite device region embedded within
an extended sample.

We first demonstrated how this approach is able to effi-
ciently treat the electronic properties of strained bubbles in
an extended graphene sheet. Considering a clamped bubble,
we have shown that the finite size gives rise to Friedel-type
oscillations in the density of states. This effect mixes with any
pseudomagnetic effects arising from the strain field. We show
that the edge effects can cloud pseudomagnetic signatures in
the LDOS by adding additional structure which is not directly
related to pseudomagnetic effects.

Second, we showed how finite leads can be added to
a patched device region to efficiently calculate transport
properties for spatially separated features, while still being
able to map local properties in various parts of the system. In
particular, we investigated the current flow around perforations
of a graphene lattice. Both idealized geometries and experi-
mental geometries obtained from high-resolution TEM images
were considered. The transmissions show distinct dips caused
by localized states along zigzag segments of the perforations.
The transmission dips were associated with vortexlike current
paths formed near the perforation edges.

We have demonstrated the versatility of this approach
to the popular recursive GF method. The method allows
for calculation of the same local and transport properties
as standard methods, but adds the ability to treat large
nonperiodic structures embedded in extended samples. We
can extend the present method beyond nearest neighbor and to
relevant alloys like hBN or transition-metal dichalcogenides.
We therefore predict that the patched GF method will prove

to be a valuable tool in the investigation of nanostructures in
two-dimensional materials.
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APPENDIX A: RECURSIVE ALGORITHM

To obtain a tridiagonal Hamiltonian we let cell n = 1
contain all sites of interest. Then following the algorithm
outlined below we assign all sites into cells.

(1) Let {n} denote all sites in cell n and {“unassigned”}
denote all sites not yet assigned to a cell.

(2) Find all sites j for which Hnj �= 0, where n ∈ {n} and
j ∈ {“unassigned”}. Denote these sites {n + 1}.

(2a) If {n + 1} contains an edge site, then all remaining
edge sites are added to {n + 1}.

(3) Sites in {n + 1} are removed from {“unassigned”}
(4) Repeat 1–3 until all sites are assigned to a cell.
Step 2a is included if we require an edge self-energy term

�B as described in Sec. II.
Assuming the block tridiagonal partitioning obtained from

the algorithm above, we make an update sweep starting from
cell n = N , as shown schematically in Fig. 10. The steps are

1
2
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n
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FIG. 10. (Top row) Recursive sweep going from cell n = N to cell n = 1. Light gray indicates blocks that are stored for the reversed sweep
and dark gray indicates blocks of the full GF. The insets show illustrations of how the different blocks correspond to neighboring cells in the
device region. (Bottom row) Reversed recursive sweep going from n = 1 to n = N showing how this sweep can obtain both diagonal and
off-diagonal blocks.
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calculated using the recursive relations [9]

gN,N = (E − HN,N )−1, (A1a)

gn,n = (E − Hn,n − V n,n+1 gn+1,n+1V n+1,n)−1, (A1b)

g1,1 =
(

E − H1,1 − V 1,2 g2,2V 2,1 −
M∑

m=1

�m
lead

)−1

,

(A1c)

where one of the Hn,n terms includes the self-energy and
�m

lead terms are included if we calculate transmission. After
the sweep is complete, the fully connected GF of cell n = 1
is obtained as G1,1 = g1,1. As all sites of interest are placed
in this cell, we can now calculate observables involving these
sites. For example, we calculate transmission, TL,L′ , between
lead L and L′ using these GFs,

TL,L′(E) = Tr
[
GL′,L�L

L,LG†
L,L′�

L′
L′,L′

]
, (A2)

where �L = i(�L − �L†) and GL,L′ (G†
L,L′) is the retarded

(advanced) GF connecting the two leads L and L′.
In order to obtain other blocks of the full GF matrix, we

need to store the GF matrix, gn,n, for each cell as we sweep
from n = N to n = 1. The stored blocks are shown in light
gray in Fig. 10.

To obtain the LDOS at site i, ρii = −Im(Gii)/π , we
need the diagonal of the GF matrix. We calculate the block
diagonal from a reversed sweep from n = 1 to n = N ;
see Fig. 10. The reversed sweep uses the block diagonals,
gn,n, from the first sweep to calculate the full diagonal
GF, G,

Gn,n = gn,n + gn,nV n,n−1Gn−1,n−1V n−1,n gn,n. (A3)

Finally, we want to obtain bond currents for the state
leaving a lead L. This can be calculated by JL

ij =
−Hij Im[Gi,1�

L
1,1G†

1,j ]/�. Remembering that the leads are
assigned to cell n = 1, we need the off-diagonal blocks,
G1,n and Gn,1, in order to obtain bond currents. Using the
stored GFs from the first sweep we can calculate the needed

off-diagonals,

G1,n = G1,n−1V n−1,n gn,n, (A4a)

Gn,1 = gn,nV n,n−1Gn−1,n. (A4b)

APPENDIX B: PSEUDOMAGNETIC FIELD FOR
ROTATIONAL SYMMETRIC STRAIN FIELD

The strain tensor is generally given as

εij = 1
2 [∂jui + ∂iuj + (∂iz)(∂j z)], i,j = x,y, (B1)

where u(x,y) is the in-plane deformation field and z(x,y) is
the out-of-plane deformation [50].

A general two-dimensional strain field, εij (x,y), leads
to a gauge field in the effective Dirac Hamiltonian of
graphene [49,50],

A = − �β

2ea0

(
εxx − εyy

−2εxy

)
, (B2)

which, in turn, gives a PMF,

Bs = ∇ × A = ∂xAy − ∂yAx. (B3)

Equations (B2) and (B3) imply that the x axis is chosen along
the zigzag direction of the graphene lattice.

Now restricting ourselves to rotationally symmetric defor-
mations, u(r) = ur and z(r) = z, while using polar coordinates
(r,θ ) yields

Bs = − �β

2ea0

[
2
g(r)

r
− ∂rg(r)

]
sin(3θ ), (B4)

with g(r) = ∂rur − ur/r + 1
2 (∂rz)2. We notice from Eq. (B4)

that the PMF for a rotationally symmetric displacement
field is always sixfold symmetric. On the other hand, the
magnitude depends on both the in-plane and the out-of-plane
displacements.

Considering the displacement field in Eq. (13), we now
obtain a PMF of the form

Bs = − �βu0

2ea0R2
sin(3θ ). (B5)

Taking into account the scaling u0 ∝ h2
0/R, we obtain a final

scaling of the PMF with the size of the bubble Bs ∝ h2
0/R
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