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Experimental advances allow for the inclusion of multiple probes to measure the transport properties of a
sample surface. We develop a theory of dual-probe scanning tunneling microscopy using a Green’s
function formalism, and apply it to graphene. Sampling the local conduction properties at finite length
scales yields real space conductance maps which show anisotropy for pristine graphene systems and
quantum interference effects in the presence of isolated impurities. Spectral signatures in the Fourier
transforms of real space conductance maps include characteristics that can be related to different scattering
processes. We compute the conductance maps of graphene systems with different edge geometries or height
fluctuations to determine the effects of nonideal graphene samples on dual-probe measurements.
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Local scattering centers such as impurities, defects, and
substrate inhomogeneities limit the theoretically high
mobility of graphene [1–3]. Improved sample preparation
and specialized substrates have improved the quality of
graphene electronics [4] such that even a single scatterer
can influence the whole device and perhaps render it useful
for, e.g., sensing applications [5,6]. A detailed understand-
ing of the influence of such defects on electronic properties
is necessary in order to exploit or avoid their influ-
ence [7,8].
Information about single scatterers can be obtained via

scanning tunneling microscopy (STM), yielding direct
information about the local density of states (LDOS).
The LDOS of graphene has been previously studied, both
experimentally and theoretically, in the presence of defects
[9–16], edges [17–21], constrictions [22], and charge
puddle formation caused by trapped molecules [23,24].
However, in many contexts one is interested in how the

local electronic transport properties, and not just the LDOS,
vary along the sample. To this aim multiprobe STM has
been used to characterize a wide range of systems [25],
including carbon nanotubes [26], Si-nanowires [27,28],
two-dimensional thin films [29], and graphene [28,30,31].
This technique analyzes nanoscale features on surfaces
without the need to fabricate invasive contacts into the
sample [30–33]. Graphene is especially interesting as it is
intrinsically two dimensional and we thus probe the material
properties by measuring the surface. Furthermore graphene
has a long inelastic mean free path [34–38], enabling the
possibility of placing two STM tips within a length scale at
which interference effects are not washed out by dephasing
[26,38–41].
In this Letter we consider such quantum interferences as

we present a theoretical analysis of the dual-probe STM
setup as sketched in Fig. 1. The methodology and analysis
is described for pristine graphene sheets and vacancies, but

is completely general and can be easily extended to other
systems. Applications to graphene systems with edges or
height fluctuations are presented as examples.
Methods.—In nonequilibrium Green’s function formal-

ism, semi-infinite leads are coupled to a finite device region
[42,43]. We instead consider an infinite two-dimensional
device connected to one fixed and one scanning STM probe
as in Fig. 1 so that conventional recursive methods are not
directly applicable, and an alternative approach must be
used. Although we consider graphene in this work, the
method is applicable to other surfaces by using the relevant
Green’s function (GF) in the following derivations. For
pristine graphene in the nearest neighbor tight-binding
model, the real-space single-particle equilibrium GF is
given by [44]

g0ijðzÞ ¼
1

ΩBZ

Z
d2k

eik·ðrj−riÞ
z2 − t2jfðkÞj2

�
z tfðkÞ

tf�ðkÞ z

�
; (1)

where z ¼ Eþ i0þ is the energy,ΩBZ is the area of the first
Brillouin zone, ri ¼ mia1 þ nia2 (with mi and ni integers)
is the position of site i, a1 and a2 are the graphene lattice
vectors, and fðkÞ ¼ 1þ eik·a1 þ eik·a2 . The carbon-carbon
hopping integral is t ≈ −2.7 eV [45].

FIG. 1 (color online). Schematic overview of a dual-probe STM
setup. Current input and output probes and an impurity on site 0
are indicated together with their relative separations.
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The zero-temperature conductance is given by the
Landauer formula ð2e2=hÞT 12 [42], where the transmission
coefficient between the two probes is

T 12ðEÞ ¼ Tr½GðEÞΓ2ðEÞG†ðEÞΓ1ðEÞ�; (2)

ΓiðEÞ (i ¼ 1, 2) is the coupling to the probes and G=G† is
the retarded/advanced Green’s function of the sample
including probe effects.
Experimental STM tips have finite radii of curvature,

limiting the resolution due to couplings with multiple
lattice sites. We employ the Tersoff-Hamann approach
[46–48] to describe a structureless tip with only the end
orbital of a linear atomic chain coupled to the sample. The
DOS of the chain is constant in the considered energy
range. The coupling between the tip and a nearby lattice site
i is angle dependent and decays exponentially with
separation [49]. The results presented below are in broad
agreement with test calculations performed for more
realistic tips, where a predictable smearing of the shorter
range features occurs.
Pristine graphene.—The transmission T 12 is obtained

from Eq. (2) using a numerical evaluation of Eq. (1). The
resulting map is shown in Fig. 2 for EF ¼ 0.5jtj. Other
Fermi energies show similar qualitative behavior, but lower
EF values require a larger scan area to obtain the same
number of oscillation periods. In armchair directions, a
constant T 12 × d12 transmission is observed, while oscil-
lations occur for zigzag directions. The results are not very
sensitive to the exact position of the stationary probe, with
the exponential coupling generally ensuring that the probe
primarily couples to a single site.
To qualitatively understand the different behavior for the

two high symmetry directions, we exploit the fact that

Eq. (1) can be approximated analytically for separations
above a few lattice spacings using the stationary phase
approximation (SPA) [44]. The GF can thus be written for
the armchair and zigzag directions, respectively, as

g0;acij ¼ AðEÞeiQðEÞdijffiffiffiffiffiffi
dij

p ; g0;zzij ¼
X
η¼�

AηðEÞeiQηðEÞdijffiffiffiffiffiffi
dij

p ; (3)

whereAðEÞ is an energy-dependent amplitude andQðEÞ is
identified with the Fermi wave vector in the direction of
separation between the probes.
Assuming that each probe couples only to a single site, we

find, from Eq. (2), that T 12 ∝ jg012j2. The transmission
decays monotonically as 1=d12. Correcting for this geomet-
rical decay yields the constant T × d transmission observed
in Fig. 2 for armchair directions. The zigzag direction
exhibits interference between theQþ andQ− terms entering
in Eq. (3). As seen in the inset of Fig. 2, this leads to both
long and short range oscillations. The long range oscillations
depend on the Fermi wavelength. The short range oscil-
lation, on the other hand, has a period of three graphene unit
cells and is inherent to quantities measured along the zigzag
direction and is independent of EF. This oscillation varies on
the atomic scale and tends to get cancelled for probes
coupling to many sites with different phases. However, the
long range oscillations are more robust, particularly for small
EF, as the phase is constant over a wider range of sites and
should thus be observable even for tips with a larger radius of
curvature. The expressions in Eq. (3) can also be used to
determine the energy-dependent oscillations arising for fixed
probes when a gate is applied. Thus the method described
here can be easily extended for a spectroscopic mode of a
dual-probe system.
Single vacancy.—The GF for a graphene system with a

perturbation can be calculated using the Dyson equation,

Gij ¼ g0ij þ
X
nm

g0inVnmGmj; (4)

where Vnm is the perturbation matrix element between site
n andm. In principle any local perturbation can be included
using this technique, and accurate parameterization for
defects can be determined by comparison with density
functional theory calculations [50,51]. The same approach
is used throughout to include hopping terms between the
probes and device region.
Figure 3 shows the relative change in transmission from

the pristine lattice case when a single vacancy is introduced
at the origin. The vacancy and fixed probe are separated
along the armchair direction and the scanning probe
measures conductance fluctuations in the region around
the vacancy. Quantum interference effects are clearly
visible in Fig. 3. The map for a zigzag separation of fixed
probe and vacancy (not shown) looks qualitatively similar.
To describe the oscillations we again turn to the SPA
expression for the GF. The solution of the Dyson equation
for a vacancy is Gij ¼ g0ij þ g0i0t00g

0
0j, where t00 ≈ −1=g000

FIG. 2 (color online). The conductance map for pristine graphene
withEF ¼ 0.5jtj. The fixed input probe is at the origin, and the map
represents the conductance between the probes as a function of
scanning probe position. The conductance has been multiplied by
the interprobe distance d12 to compensate for a geometric decay, see
Eq. (3). The inset is a magnification of the boxed area.
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is the t-matrix element of site 0 when V00 → ∞. Analytic
solutions can be found for the scanning probe path shown by
the dashed line in Fig. 3. We observe oscillations in regionA,
where the scanning probe is between the fixed probe and
vacancy such that d12 ¼ d10–d20 (see Fig. 1). From Eq. (3)
we find ΔT ∝ Re½At00 expð2iQd20Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d10d20d12

p �, which
exhibits 2Q oscillations. When the scanning probe is not
between the fixed probe and vacancy no oscillations occur.
In region B the transmission is decreased due to scattering,
whereas in region C the transmission is either enhanced or
decreased depending on the phase difference between the
emitted and backscattered waves.
This simple analytical picture allows us to interpret the

oscillations as interferences between an incoming plane
wave and the backscattered wave, analogous to optical
interference effects. To analyze the pattern we consider the
Fourier transform (FT) of the conductance map. This
approach is generally applicable to scanning images and
is not limited to the graphene example. Similar procedures
are often employed in the analysis of conventional STM
measurements [12,13,23]. Figure 4 shows the FTs of ΔT
for the single vacancy at different energies and positions of
the fixed probe relative to a vacancy at the origin, with
panel (a) corresponding to Fig. 3.
For the incoming wave along the−y (armchair) direction

the double-ring patterns in Fig. 4 are the result of scattering
from the top and bottom of the Fermi surface where the k
vectors are along the y direction [indicated by red dots in
Figs. 4(f) and 4(g)], to all other points (indicated with
arrows) on either the same Fermi surface [intravalley,
Fig. 4(f)] or that of the opposite valley [intervalley,
Fig. 4(g)]. The intravalley scattering produces the short
wave vector features present at the center of the FT (and at
all reciprocal lattice vectors), while the intervalley scatter-
ing yields the larger wave vector features at the K and K0

points. Figures 4(a) and 4(b) correspond to an energy in the
linear dispersion regime whereas Figs. 4(c) and 4(d) show
an energy with trigonal warping, thus leading to the FT
signatures sketched by the diagrams of Figs. 4(f) and 4(g).
Additional fine structure is seen in Fig. 4 due to deviations

from the ideal picture of a plane incoming wave. Allowing a
broader range of incoming k vectors increases the part of the
Fermi surface which can act as an initial state. This effect is
more pronounced for incoming waves along the zigzag
direction where even a small broadening of the incoming
k vector allows a larger part of the Fermi surface to act as an
initial state. Similar calculations performed for a Gaussian
shaped charge distribution, modeling a trapped charge, find
that the FT scattering fingerprint is qualitatively similar to
that of the single vacancy. This is in contrast to single-probe
LDOS measurements, where the intervalley scattering
fingerprint vanishes for extended defects [22,52].
Other geometries.—We now consider two examples of

more complicated defects: (i) A graphene sheet with an
edge [Fig. 5(a)], and (ii) a nonplanar sheet with an irregular
height profile [Fig. 5(d)].
In Fig. 5(a), we consider a semi-infinite graphene sheet

with a pristine zigzag or armchair edge [53]. The incoming

FIG. 3 (color online). Relative conductance map for EF ¼
0.25jtj around a vacancy at (0, 0). The fixed probe (outside the
scan area) at (0,106) nm is separated from the impurity along the
armchair direction.

(a) (b)

(c) (d)

(e) (f) (g)

FIG. 4 (color online). Fourier transform of the real-space map
of ΔT for a single vacancy separated from the fixed probe along
the armchair [(a) and (c)], and zigzag [(b) and (d)] directions.
Energy is in the linear regime (E ¼ 0.25jtj) in (a) and (b), and
beyond the linear regime (E ¼ 0.5jtj) in (c) and (d). (e) The Fermi
surface of graphene beyond the linear regime. (f) and (g) Scatter-
ing diagrams for intra- and intervalley scattering.
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wave for the armchair edge is along the zigzag direction,
and vice versa. The conductance maps (not shown) reveal
oscillations away from the edge arising from the interference
between incoming and backscattered waves. In contrast to the
single vacancy case, not all scattering angles are available and
the double-ring features in the FTs reduce to points indicating
the direction of propagation (zigzag for armchair edge and
vice versa) as shown in Figs. 5(b) and 5(c). The only
qualitative difference is the direction of the incoming wave
and hence the direction of the scattering fingerprint in the FT.
This is in sharp contrast to single-probe STM measurements,
where the zigzag edge does not show an intervalley signal
[55]. The dual-probe setup thus opens the possibility of
characterizing an edge by its interference pattern as both
edges are equally visible with different signatures.
A nonplanar height profile, as in Fig. 5(d), affects the

dual-probe measurement in two ways [56]. The underlying
electronic properties of the system are altered by the
varying bond lengths throughout the sample and secondly,

the tip-sample coupling is affected by their now spatially
varying separation. The conductance map in Fig. 5(e) takes
both of these effects into account. The signal enhancement
for regions where the tip and sample are nearest suggests
that it is the tip-sample separation dependent contribution
which dominates. This is confirmed in Fig. 5(f) where we
calculate the full transmission (blue) along the cross section
shown by the white dashed line in Fig. 5(e), with the shaded
region showing the height profile along this path. In
addition, we show the transmissions including the elec-
tronic contribution only, T E, (dashed red line, calculated by
mapping the changed electronic structure onto a flat sur-
face) and the height contribution only, T H (dotted green
line, calculated by varying the tip-sample separation but
leaving the sample electronic structure unchanged). We
note that T H is a good match to the full calculation,
whereas T E only slightly deviates from the pristine T0

(black) curve. However, the height fluctuations considered
here are not large enough to give rise to pseudomagnetic
field effects like the ones considered in Ref. [59]. In such
cases the behavior of T E may provide an ideal framework
to determine the effects of pseudomagnetic fields on the
transport properties.
Conclusion.—The dual-probe setup offers new flexibility

to study directional transport effects in nanosystems
beyond the reach for a single STM probe experiment.
Using graphene as a case study, anisotropic effects in the
pristine material and quantum interferences around defects
have been treated. The methodology developed is general
and easily applicable to other materials. While the focus of
this work has been on the scanning mode to reveal
topographic details of the sample, an extension to the case
of fixed probes and a variable gate gathering spectroscopic
data is straightforward. This may be particularly useful
when examining nonplanar systems, where the variations
due to tip-sample separation may outweigh contributions
arising from the actual electronic properties of the system.
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