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Optical bistability of graphene in the terahertz range
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We use an exact solution of the relaxation-time Boltzmann equation in a uniform ac electric field to describe
the nonlinear optical response of graphene in the terahertz (THz) range. The cases of monolayer, bilayer, and
ABA-stacked trilayer graphene are considered, and the monolayer species is shown to be the most appropriate
one to exploit the nonlinear free electron response. We find that a single layer of graphene shows optical bistability
in the THz range, within the electromagnetic power range attainable in practice. The current associated with the
third harmonic generation is also computed.
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I. INTRODUCTION

Optical bistability is a way of controlling light with light
[1,2]. Bistability refers to an optical effect where a system
exhibits two different values of the transmitted light intensity
for a single value of the input intensity. One way of analyzing
the bistability is to explore the optical Kerr effect, a nonlinear
phenomenon where the light modulates the material’s refrac-
tive index [3]. In general, for the effect to be measurable,
the light field must transverse a macroscopic distance within
the nonlinear material. In a semiconductor, optical bistability
was observed a long time ago [4]. The desired goal in the
field of optical bistability is the possibility of realizing in a
single device a set of functionalities, such as switching, logic
functions, memory with a fast time response, and modulation,
all using a low power laser [5]. Eventually, the practical
realization of an optical computer is on the horizon [6].

In general, optical bistability can be realized at the interface
between a linear and a nonlinear material, with the reflected
light intensity showing hysteresis [7]. However, what may
seem surprising is that the hysteresis can be observed in a
system one atom thick, such as graphene. In the optical region
of the spectrum, it has been shown that graphene has a strong
nonlinear optical response [8–11]. The same phenomenon has
been observed in graphene derivatives [12] and in graphene
nanoribbons intercalated with boron nitride [13]. It has
also been shown that graphene can dramatically change the
nonlinear response of a silicon photonic crystal [11].

Theoretically, the nonlinear response of graphene at optical
frequencies has been exploited to produce a novel class of
nonlinear self-confined modes [14]. On the other hand, in the
terahertz (THz) spectral range, graphene has the potential for
many applications [15–18].

Some aspects of the nonlinear optical properties of
graphene have already been considered in the literature
[19–22]. However, the exploitation of those properties
to the problem of bistability was not considered before.
Results for the nonlinear Drude response of graphene
in the collisionless regime have been derived previously
[19–22]. Here we extend the derivation to the regime where
a finite relaxation time exists, given two alternative methods
to generate the expansion (one of them nonperturbative). The
response of graphene to an electromagnetic pulse has also been

obtained [21]. It has also been shown that strong magnetic
fields, which drive the system to the quantum Hall regime,
can induce a giant optical nonlinearity in graphene [23]. In
addition, the latter authors have also discussed an efficient
nonlinear generation of THz plasmons in graphene [24].

In this paper we show that graphene has a strong nonlinear
response in the THz leading to the phenomenon of bistability.
This property may allow the fabrication of active devices in
this spectral range. Furthermore, the study of nonlinear surface
plasmon polaritons on graphene becomes accessible, since
we can now solve the dispersion relation in the presence
of a field-dependent conductivity. Indeed, one can even
envision controlling light with light exploiting plasmonic
nanostructures [25].

The paper is organized as follows. In Sec. II we present
the general solution of the Boltzmann equation, which is
exact within the momentum-independent relaxation time
approximation. This solution is used in Sec. III to calculate
the frequency-dependent nonlinear conductivity of monolayer,
bilayer, and ABA-stacked trilayer graphene. The THz optical
bistability in monolayer graphene is considered in Sec. IV and
the last section is devoted to conclusions.

II. BOLTZMANN EQUATION FOR A TWO-DIMENSIONAL
ELECTRON SYSTEM UNDER ac ELECTRIC FIELD

In the presence of an ac field, E = E(t)ux [which is
directed along the x axis and the time dependence of E(t),
in principle, can have an arbitrary form], within the relaxation
time approximation, the Boltzmann equation reads

∂fn(k,t)

∂t
− e

�
E(t)

∂fn(k,t)

∂kx

= −fn(k,t) − f0[εn(k)]

τ
, (1)

where f0[εn(k)] is the Fermi-Dirac distribution function, εn(k)
is the nth band energy of two-dimensional electrons with
k = (kx,ky), and τ is the (microscopic) relaxation time. As
shown in Appendix A, this equation can be solved analytically
if we assume that the microscopic relaxation time does not
depend on k. Although it might look unrealistic at first sight,
this approximation is justified by the fact that τ disappears
from the expression for the electric current in the physically
interesting limit of frequencies (ωτ � 1), as will be shown
below. Alternatively, one can solve Eq. (1) by iterations (see
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Appendix B), a procedure that allows one to take into account
the dependence of the microscopic relaxation time upon the
electron momentum. The exact solution is

fn(k,t) = e−t/τ

∫ t

−∞

dt ′

τ
et ′/τ f0[ε(kx + κ(t,t ′),ky)]. (2)

Here we introduced a shorthand notation κ(t,t ′) =
(e/�)

∫ t

t ′ E(t ′′)dt ′′. For a harmonic time dependence E(t) =
E0 cos(ωt), which will be the focus of our study, the function
κ is

κ(t,t ′) =
∫ t

t ′

eE(t ′′)
�

dt ′′ = eE0

�ω
[sin(ωt) − sin(ωt ′)]. (3)

III. NONLINEAR CURRENT RESPONSE

A. General expression

The current is given in terms of the solution of the
Boltzmann equation, Eq. (2), by

jx = − e

π2�

N∑
n=1

∫
dk

∂εn

∂kx

fn(k,t) = − e

π2�
e−t/τ

∫ t

−∞

dt ′

τ
et ′/τ

×
N∑

n=1

∫
dk

∂εn

∂kx

f0[εn(kx + κ(t,t ′),ky)], (4)

where N is the number of bands in the spectrum (e.g., two in
the case of bilayer graphene) and the integration is over the
first Brillouin zone. In the low temperature limit (T → 0) the
equilibrium Fermi-Dirac distribution function can be replaced
by the Heaviside step function θ , so that the nonequilibrium
distribution function becomes

f0[εn(kx + κ(t,t ′),ky)] = θ [εF − εn(kx + κ(t,t ′),ky)]. (5)

In the following, Eqs. (4) and (5) will be used to compute the
nonlinear response in different forms of graphene where the
electronic energy spectra are different.

B. Monolayer graphene

The spectrum of monolayer graphene consists of only one
band (N = 1), which in the Dirac cone approximation can be
represented as ε1(k) = vF �

√
k2
x + k2

y [vF = √
3at/(2�) is the

Fermi velocity of the electrons, a is the lattice constant, and t

is the tight-binding nearest-neighbor hopping parameter). To
compute jx we first focus our attention on the momentum
integration. To that end, we define the integral

I11(κ)=
∫

dkxdky

kx√
k2
x + k2

y

θ
[
εF − vF �

√
(kx + κ)2 + k2

y

]
,

(6)

such that

jx = −evF

π2
e−t/τ

∫ t

−∞

dt ′

τ
et ′/τ I11(κ), (7)

and κ ≡ κ(t,t ′). Note that we consider a doped graphene sheet,
i.e., we assume a finite εF [and a corresponding finite kF =
εF /(�vF )]. Performing the substitutions kx + κ = k̃x , ky = k̃y

the integral becomes

I11(κ) =
∫

dk̃xdk̃y

k̃x − κ√
(k̃x − κ)2 + k̃2

y

θ
(
εF − vF �

√
k̃2
x + k̃2

y

)
.

(8)

Introducing the limits of integration imposed by the step
function, the integral splits into two terms:

I11(κ) =
∫ kF

−kF

dk̃y

∫ √
k2
F −k2

y

0
dk̃x

k̃x − κ√
(k̃x − κ)2 + k̃2

y

+
∫ kF

−kF

dk̃y

∫ 0

−
√

k2
F −k2

y

dk̃x

k̃x − κ√
(k̃x − κ)2 + k̃2

y

. (9)

The integral over dk̃x is elementary and we end up with

I11(κ) = 2
∫ kF

0
dk̃y

(√
κ2 + k2

F − 2κ

√
k2
F − k̃2

y

−
√

κ2 + k2
F + 2κ

√
k2
F − k̃2

y

)
. (10)

We note that I11(κ) is an odd function of κ . The integral I11(κ)
can be written in terms of elliptic integrals, a result valid for all
values of the ratio κ/kF . In the regime κ/kF � 1 the integral
I (κ) can be expressed in terms of the Gaussian hypergeometric
function [26] 2F1(a,b; c,x) as

I11(κ) = −πκkF × 2F1

(
−1

2
,
1

2
; 2,

κ2

k2
F

)
. (11)

Although this is a formal analytical expression, it is preferable
to expand it in powers of κ/kF ,

I11(κ) ≈ −πkF κ

[
1 − 1

8

(
κ

kF

)2

− 1

64

(
κ

kF

)4]
. (12)

It is important to stress that all terms but the first in this
series have the same sign. A comparison between the result of
Eq. (10) with the approximate expression (12) is given in
Fig. 1. Clearly, the expansion (12) works very well all the way
from κ/kF = 0 till κ/kF = 1.

To evaluate the current at zero temperature we still need to
compute the integral over t ′. The first-order term is

J (1) = e−t/τ

∫ t

−∞

dt ′

τ
et ′/τ κ(t,t ′)

= eE0

�

τ [cos(tω) + τω sin(tω)]

1 + τ 2ω2

= eE0

2�
τ

1 + iτω

1 + τ 2ω2
e−iωt + c.c. (13)

The current is thus

j (1)
x = evF kF

π
J (1) = e2

π�

εF τ

�

1

1 − iτω

E0

2
e−iωt , (14)

which is nothing but Drude’s result. Here we have extracted the
dependence of the integral on e−iωt only. In the limit ωτ � 1,
the linear part of the current can be expressed as

j (1)
x = iν1

E0

2
e−iωt , ν1 = e2

π�

εF

�ω
. (15)
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FIG. 1. (Color online) Plot of the function I (κ) vs h = κ/kF .
Function I (κ), as computed from Eq. (10), and (dashed line) the
approximation given by Eq. (12); we have taken kF = 1.

The calculation of the third-order term is more tedious [27].
We have to evaluate

J (3) = e−t/τ

∫ t

−∞

dt ′

τ
et ′/τ κ3(t,t ′)

= − 18τ 3

(2iτω − 1)(1 + τ 2ω2)

(
eE0

2�

)3

e−iωt

+ 6τ 3

1 − 6iωτ−11τ 2ω2 + 6iτ 3ω3

(
eE0

2�

)3

e−i3ωt + c.c.

(16)

which for ωτ � 1 leads to

J (3) = 9i

ω3

(
eE0

2�

)3

e−iωt − i

ω3

(
eE0

2�

)3

e−i3ωt . (17)

The third-order current, j (3)
x , is given by

j (3)
x = − evF

8πkF

J (3) = j (3,ω)
x + j (3,3ω)

x , (18)

where

j (3,ω)
x = −iν3

E3
0

8
e−iωt , ν3 = 9

e2

�π

v2
F

8εF

e2

�ω3
, (19)

and

j (3,3ω)
x = i

ν3

9

E3
0

8
e−i3ωt . (20)

The term j (3,3ω)
x represents the third harmonic generation. We

also note that result (19) differs by a factor of 3 from the
result for the same quantity computed by Mikhailov [19]. This
difference exists, because Mikhailov treatment does not permit
one to study the regime of ωτ � 1, since by construction it
assumes that the observation time is much smaller than τ . Fi-
nally, the current to fifth order (in the limit τω � 1) is given by

j (5,ω)
x = −iν5

(
E0

2

)5

e−iωt , ν5 = 25

16

e2

�π

v4
F

ε3
F

e4

�ω5
. (21)

This concludes the derivation of the nonlinear response
of monolayer graphene. An alternative way to obtain the

nonlinear current in monolayer graphene is presented in
Appendix B, where the Boltzmann equation is solved by
means of expansion of the nonlinear distribution function in
powers of the electric field, while here the expansion was
performed during the calculation of the current density. In
both cases the dimensionless expansion parameter is k0/kF ,
where k0 = eE0/(�ω). The procedure is valid if k0/kF < 1.

C. Bilayer and trilayer graphene

We next consider an AB-stacked graphene bilayer, whose
spectrum consists of two parabolic bands (N = 2) and can be
represented as [29]

ε1(k) = v2
F �

2
(
k2
x + k2

y

)
t⊥

; (22)

ε2(k) = t⊥ + v2
F �

2
(
k2
x + k2

y

)
t⊥

, (23)

where t⊥ is the hopping parameter between the layers.
Substituting (22) and (23) into Eq. (4), we obtain the following
expression for the current density:

jx = −2ev2
F �

π2t⊥
e−t/τ

∫ t

−∞

dt ′

τ
et ′/τ [I21(κ) + I22(κ)], (24)

where I2n with n = 1,2 are integrals analogous to I11 defined
in the previous section, and are evaluated in Appendix C.
Substituting them into Eq. (24) and using Eq. (13) we obtain

jx = 2e

π�
[εF + (εF − t⊥)θ (εF − t⊥)]J (1)

= 2e2

π�2
[εF + (εF − t⊥)θ (εF − t⊥)]

E0

2
τ

1 + iτω

1 + τ 2ω2
e−iωt .

(25)

It is interesting that, owing to its parabolic energy spectrum
[Eqs. (22) and (23)], bilayer graphene is a purely linear system.
If the Fermi level is below the interlayer hopping energy t⊥,
the conductivity is equal to twice the first-order conductivity
of monolayer graphene [compare Eqs. (25) and (14)]. For
εF > t⊥, there is a correction to the conductivity due to the
second band filling.

The spectrum of the ABA-stacked trilayer graphene con-
sists of one Dirac-type and two parabolic bands [30],

ε1 = �
2v2

F

(
k2
x + k2

y

)
√

2t⊥
; (26)

ε2 = �vF

√
k2
x + k2

y ; (27)

ε3 =
√

2t⊥ + �
2v2

F

(
k2
x + k2

y

)
√

2t⊥
. (28)

Substituting these relations into Eq. (4) and proceeding as
before we obtain the following expression for the induced
current:

jx = e2

π�2
[3εF + 2(εF −

√
2t⊥)θ (εF −

√
2t⊥)]

× E0

2
τ

1 + iτω

1 + τ 2ω2
e−iωt + j (3)

x + j (5,ω)
x . (29)
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Here j (3)
x and j (5,ω)

x coincide with those defined by Eqs. (18)
and (21), respectively. The main result is that, in contrast
with the case of bilayer graphene, this material is a nonlinear
medium alike monolayer graphene. However, the linear part
of the induced current in this case is larger than for monolayer
graphene, so we may say that its nonlinearity is relatively
weaker.

We note that below we use the expressions for the nonlinear
optical response of graphene in the collisionless regime. This
may be experimentally justified. In a previous experimental
study [31] of the transmittance of graphene in the wave-number
range of [30,1000] cm−1, a relaxation rate of 
 = 95 cm−1

was found (see Fig. 3 of that reference). For the two frequencies
considered below the product ωτ = 2πf τ is 2.2 and 1.1 for
the frequencies of f = 1 THz and f = 0.5 THz, respectively
[see also Ref. [32] for different (smaller) values of 
]. Clearly
these numbers are not in the in the regime ωτ � 1. However,
these numbers are for large area chemical vapor deposition
grown graphene, which is known to produce a low-mobility
material. On the other hand, exfoliated graphene has mobilities
that are more than one order of magnitude larger. In an
experiment done in this type of graphene one would be in
the regime ωτ � 1. Indeed, a recent theoretical calculation
[33] of the optical response of suspended graphene in the
terahertz range, using ab initio methods, yielded a value of

 = 1/τ ∼ 0.8 THz which leads to 2πf/
 ∼ 7.9.

IV. BISTABILITY OF MONOLAYER GRAPHENE

We shall now discuss the possibility of optical bistability
in graphene. To this end, we start by solving the scattering
problem in the geometry defined by Fig. 2, where a graphene
sheet, the nonlinear medium, is located at z = 0. The boundary
conditions obeyed by the electromagnetic field are

Er + E0 = Et (30)

and

BL − BR = μ0jx, (31)

where BL is the magnetic field of the electromagnetic field to
the left of graphene and BR that to the right. From Maxwell’s
equations it follows that

∂zEx = iωBy, (32)

which imply that

BL = k

ω
(E0 − Er ) (33)

FIG. 2. (Color online) Scattering geometry. The thick line repre-
sents the graphene sheet.

and

BR = k

ω
Et . (34)

Thus
k

ω
(E0 − Er ) − k

ω
Et = iμ0

(
ν1Et − ν3E

3
t − ν5E

5
t

)
(35)

or

E0 = Et

[
1 − i

μ0c

2

(
ν1 − ν3E

2
t − ν5E

4
t

)]
, (36)

where ν1, ν3, and ν5 are defined in Eqs. (15), (19), and (21). We
must stress the bistability effect does not require the inclusion
of the fifth-order term. We only include it here to show that
the effect is not suppressed by higher-order powers of the
expansion. Here we suppose for convenience that Et is purely
real, i.e., possesses zero phase, then E0 is complex. Taking the
square of the modulus of Eq. (36), we obtain

|E0|2 = E2
t

[
1 + μ2

0c
2

4
ν2

1

(
1 − ν3 + E2

t ν5

ν1
E2

t

)2]
. (37)

Defining |E0|2 = Y and E2
t = X [34], we rewrite Eq. (37) as

Y = X[1 + β(1 − �X)2], (38)

where

β = μ2
0c

2

4
ν2

1 = 4α2 ε2
F

�2ω2
(39)

is a dimensionless parameter, α is the fine-structure constant,
and

� = ν3 + E2
t ν5

ν1
= 9

8

v2
F �

2

ε2
F

e2

�2ω2
+ 25

16

v4
F

ε4
F

e4

ω4
X. (40)

Clearly, it follows from Eq. (38) that for X = 1/� resonant
transmission occurs; that is, the system becomes fully trans-
parent (X = Y ) [35].

It is more convenient to rewrite Eq. (38) in dimensionless
form. To that end we introduce the new variables

x = e2E2
t

�2ω2k2
F

(41)

and

y = e2E2
0

�2ω2k2
F

, (42)

which leads to a universal equation for the relation between x

and y as a function of the dimensionless parameter β:

y = x

[
1 + β

(
1 − 9

8
x − 25

16
x2

)2]
. (43)

Let us now analyze the consequences of Eq. (43). For a
given value of E0 this equation has one or more real solutions,
such that Et < E0. These solutions are depicted in Fig. 3. From
this figure we see that there is a region of incoming intensities
(Y− � Y � Y+) for which there are three possible values of
the transmitted intensity (X). However, the intermediate one
corresponds to an unstable state (like in the case of first-order
phase transitions). If one starts at small values of Y and cranks
up the intensity of the laser, one follows the lower curve till
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FIG. 3. (Color online) Bistability curves of the dimensionless
field x as a function of y, for different values of the parameter β.
When the power of the laser is increased the transmission through
graphene follows the curve starting at zero until it reaches a point
where the transmission suffers a sudden jump to higher values. The
dashed-dotted straight line is the function x = y.

a point Y+ where there is a sudden jump in the transmitted
intensity X, represented by an arrow pointing up. On the
other hand, if one starts at a high power and reduces it, the
transmitted power will follow the solid curve, until it suddenly
jumps to a regime of low transmission (Y−), represented by
a dashed line with an arrow pointing down. This implies that
there is a hysteresis effect, or bistability. We should emphasize
that this bistability is of electronic origin and, therefore, the
switching of the bistability should be quite fast.

The incident power domain where Eq. (38) has three roots
can be found by putting its discriminant equal to zero, namely,

27β�2Y 2 − 4β�(β + 9)Y + 4(1 + β)2 = 0 (44)

[the last term in (40) was neglected for simplicity]. From
Eq. (44) we obtain

Y± = 2

27β�
[β(β + 9) ±

√
β(β − 3)3]. (45)

It follows from Eq. (45) that if β � 3 there is only one root of
Eq. (38), i.e., there is no bistability. For β > 3 an increase of
β leads to the broadening of the bistability domain Y− � Y �
Y+.

The solution of the bistability equation in terms of di-
mensionless variables allow us to control the validity of the
expansion, since for the considered parameters we always
have x < 1; that is, the condition h = k0/kF < 1 [with k0 =
eEt/(�ω)] is not violated along the hysteresis curve.

V. CONCLUSIONS

In summary, we analyzed the nonlinear response of doped
monolayer and multilayer graphene in the THz range, where
it is determined by intraband transitions of free electrons. Our
analysis, based on an exact solution of the relaxation-time
Boltzmann equation, shows the crucial role of the Dirac-type

electronic spectrum in getting considerable (third-order)
nonlinearity and indicates monolayer graphene as the most
appropriate one to exploit it. The nonlinearity causes the third
harmonic generation (the current j (3,3ω) calculated in Sec. III)
and the optical bistability considered in the previous section.
The latter is important because of its potential for applications
in THz laser pulse modulation, optical switching, and signal
processing. The estimated switching powers are attainable
with existing terahertz radiation sources. In fact, THz lasers
with peak electric fields of ∼4 MV/m have recently been
built [36]. Single-cycle THz pulses with amplitudes exceeding
100 MV/m are also possible [37]. These peak values are
within the range needed to perform experiments associated
with the results of Fig. 3. The effect can be enhanced by
stacking several layers of graphene together, separated from
each other by a boron nitride spacer (rather than using
multilayer graphene sheets).
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APPENDIX A: EXACT SOLUTION OF THE
BOLTZMANN EQUATION

Here we give, for completeness, a derivation of the
exact solution for the relaxation-time Boltzmann equation
with uniform, time-dependent fields. This situation has been
analyzed by a large number of researchers in the past. The
solution is implicit (but not explicitly stated) in the early
work of Chambers [38], and analyzed in detail by Ignatov
and Romanov in their discussion of nonlinear electromagnetic
properties of semiconductor superlattices [39]. To solve (1) we
proceed as follows. Making the transformation

f (k,t) = e−t/τ g(k,t), (A1)

Eq. (1) reads

τ
∂g(k,t)

∂t
− k0(t)

∂g(k,t)

∂kx

= f0e
t/τ , (A2)
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where k0(t) = eE(t)τ/�. This differential equation can be
solved by the method of characteristics. We thus write

dt

τ
= − dkx

k0(t)
= dg(k,t)

f0et/τ
. (A3)

The characteristic curves are defined by the solution of

dt

τ
= − dkx

k0(t)
⇔ k0(t)dt = −τdkx, (A4)

which upon integration gives∫ t

k0(t1)dt1 + τkx = C, (A5)

which defines a family of curves for different C’s. We can
again use the characteristic relations and write

dg(k,t) = f0(kx,ky)et/τ dt

τ
. (A6)

Using the equation for the characteristic curve we write

dg(k,t) = f0

[
C/τ −

∫ t

k0(t1)dt1/τ,ky

]
et/τ dt

τ
, (A7)

which upon integration gives

g(k,t) =
∫ t

t0

dt ′

τ
f0

[
C/τ −

∫ t ′

k0(t1)dt1/τ,ky

]
et ′/τ , (A8)

and writing

C/τ =
∫ t

k0(t1)dt1/τ + kx, (A9)

the equation for g(k,t) reads

g(k,t) =
∫ t

t0

dt ′

τ
et ′/τ f0

[
kx +

∫ t

t ′
k0(t1)dt1/τ,ky

]
, (A10)

from which f (k,t) follows. The value of t0 is determined from
the following condition: if k0(t) → 0, then f (k,t) → f0(k).
In this limit we obtain

lim
E(t)→0

f (k,t) → f0(k)e−t/τ

∫ t

t0

et ′/τ dt ′/τ, (A11)

which implies that t0 = −∞. Thus

f (k,t) = e−t/τ

∫ t

−∞

dt ′

τ
et ′/τ f0

×
[
kx +

∫ t

t ′
k0(t1)dt1/τ,ky

]
, (A12)

the result presented in the main text.

APPENDIX B: ITERATIVE SOLUTION OF THE
BOLTZMANN EQUATION

The results obtained in the bulk of the text for the nonlinear
current can also be derived, although in a less elegant way,
by an iterative approach. We give here the derivation of the
current j 3,ω

x for the case of graphene. We assume a momentum-
independent relaxation time, but the method works as well if
τ is momentum dependent.

Within the relaxation-time approximation, the Boltzmann
equation reads

∂f

∂t
− e

�

�E · �∇�kf = −f − f0

τ
, (B1)

where e > 0, f0 is the distribution function in equilibrium, and
f is the distribution function in the presence of the field (that
is, out of equilibrium). We assume that the system is subjected
to a finite ac field of the form

�E = ε0ûxe
−iωt + ε∗

0 ûxe
iωt , (B2)

where at some point in the calculation we take ε0 = ε∗
0 =

E0/2. We seek a distribution function in the form

f (t) = f0 + f1(t) + f2(t) + f3(t), (B3)

where the subindex refers to the power of the field within the
term of the distribution.

We note in passing that the solution of a differential equation
of the form

ẏ + ay = s(t), (B4)

where s(t) is a source term, reads

y(t) = e−at

∫ t

−∞
s(t ′)eat ′dt ′. (B5)

For sure, this is indeed a particular solution, but one where the
memory of the transient response has been lost; this is assured
by taking t ′ = −∞ in the lower limit of the integral. In the
context of the response of an electron gas to an ac electric field,
where dissipation exists, this choice for the lower limit of the
integral is physically justified.

We now plug in the expansion (B3) in the Boltzmann
equation and gather the terms with the same order in the field.
This leads to

ḟ1 + f1

τ
= e

�

�E · �∇�kf0, (B6)

ḟ2 + f2

τ
= e

�

�E · �∇�kf1, (B7)

ḟ3 + f3

τ
= e

�

�E · �∇�kf2. (B8)

Equation (B6) is of the form (B5) and we obtain for f1 the
result

f1 = ∂f0

∂ε

e�vF · ûxε0

1/τ − iω
e−iωt + ∂f0

∂ε

e�vF · ûxε
∗
0

1/τ + iω
eiωt , (B9)

where ε = vF �k and �vF = vF
�k/k. The details of the calcula-

tion are as follows:

f1 = e−t/τ e

�

�∇�kf0 ·
∫ t

−∞
(ε0ûxe

−iωt + ε∗
0 ûxe

iωt )et ′/τ dt ′.

(B10)

Upon integration, the result (B9) follows. We have also used
the result

�∇�kf0 = ∂f0

∂ε
�vF . (B11)
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We now proceed to the solution of Eq. (B7). Explicitly, we
have

ḟ2 + f2

τ
= e

�
(ε0ûxe

−iωt + ε∗
0 ûxe

iωt ) · �∇�k

×
[
∂f0

∂ε

(
e�vF · ûxε0

1/τ − iω
e−iωt + H.c.

)]
. (B12)

Taking ε0 = ε∗
0 and solving the differential equation, we obtain

for f2 the result

f2 = f ′′
0

e2v2
F

1/τ − iω
(�vF · ûxε0)2

(
e−2iωt

1/τ − 2iω
+ τ

)

+ f ′
0

e2vF

τ − iω

1

�k

[
ε2

0 − (ε0ûx · �vF /vF )2
]

×
(

e−2iωt

1/τ − 2iω
+ τ

)
+ H.c., (B13)

where

f ′
0 = ∂f0

∂ε
(B14)

and

f ′′
0 = ∂2f0

∂ε2
, (B15)

and the result (�ε0 = ε0ûx)

�∇�k(�ε0 · �vF ) = vF
�∇�k(�ε0 · �k/k) = vF

( �ε0

k
− �ε0 · �k

k3
�k
)

(B16)

has been used. Clearly, f2 does not contribute to the current,
because ∫ 2π

0
cos θ =

∫ 2π

0
cos3 θ = 0. (B17)

We should note the presence in f2 of a term that does not
oscillate in time. This term, however, will contribute to another
term in f3 oscillating with frequency ω. Finally, we have to
solve

ḟ3 + f3

τ
= e

�
(e−iωt + eiωt )ε0ûx · �∇�kf2. (B18)

The right-hand side of the last equation together with its
integration produces a number of terms. We are interested
in those terms proportional to e−iωt . We note that we can write
f2 in a form more convenient to our purposes (that is, power
counting) as

f2 =
[
f ′′

0 e2(�vF · ûxε0)2 + f ′
0
e2vF

�k

[
ε2

0 − (ε0ûx · �vF /vF )2
]]

×
(

2

(1/τ )2+ω2
+ e−2iωt

(1/τ − iω)(1/τ − 2iω)
+ H.c.

)
,

(B19)

where H.c. refers to the Hermitian conjugate of the second
term. Given the form of f3 in (B18) and Eq. (B19) it is a

simple task to isolate those terms proportional to e−iωt ; there
are four such terms. The calculations are straightforward. The
result is

f3 = e3v2
F

�
ε0ûx · �∇�k[f ′′

0 (ε0ûx · �k/k)2]g(ω)

+e3vF

�2
ε0ûx · �∇�k

{
f ′

0

[
ε2

0/k − (ε0ûx · �k)2/k3
]}

g(ω),

+ · · · , (B20)

where g(ω) reads

g(ω) = 2

1/τ 2 + ω2

e−iωt

1/τ − iω
+ e−iωt

(1/τ − iω)2(1/τ − 2iω)
.

(B21)

In Eq. (B20) only the terms proportional to e−iωt are written
explicitly. The collisionless limit of g(ω) reads

lim
τ→∞ g(ω) = 3i

2ω3
e−iωt . (B22)

We notice that the terms containing derivatives of the δ

functions do not contribute to the current. In this case, the
current that oscillates with frequency ω is simply given by

j (3,ω)
x = − e4vF

π2�3

∫ 2π

0

∫ ∞

0
kdk cos2 θδ(k − kF )

1

k2

×3ε3
0 sin2 θg(ω). (B23)

Performing the integrations and writing ε0 = E0/2 we obtain

j (3,ω)
x = −3

4

e4

π�3

vF

kF

E3
0

8
g(ω), (B24)

which in the collisionless limit reads

j (3,ω)
x = −i

9

8

e4

π�3

vF

kF

E3
0

8
e−iωt . (B25)

The explicit form of f3 is obtained from

f3 = f ′′′
0 e3(�ε0 · �vF )3g(ω) + f ′′

0
e3

�
�ε0 · �∇�k(�vF · �ε0)2g(ω)

+ f ′′
0

e3

�
vF �vF · �ε0

(
ε2

0

k
− (�ε0 · �k)2

k3

)
g(ω)

+ f ′
0
e3

�2
vF �ε0 · �∇�k

(
ε2

0

k
− (�ε0 · �k)2

k3

)
g(ω)

+ · · · , (B26)

where the following relations are useful:

�ε0 · �∇�k(�ε0 · �vF /vF )2 = 2(�ε0 · �vF /vF )

×
(

ε2
0

k
− (�ε0 · �k)2

k3

)
(B27)

and

�ε0 · �∇�k

(
ε2

0

k
− (�ε0 · �k)2

k3

)
= −3

ε2
0

k2
(�ε0 · �vF /vF )

+ 3
(�ε0 · �vF /vF )3

k2
. (B28)
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We also note the result∫
F (k)δ(n)(k − kF )dk = (−1)nF (n)(kF ), (B29)

where the superscript (n) refers to the order of the deriva-
tive in order to k. This result is used to prove that the
terms proportional to derivatives of the δ function (the first
three terms) in Eq. (B26) give a zero contribution to the
current.

APPENDIX C: DETAILS OF CALCULATION OF THE
CURRENT IN BILAYER AND TRILAYER GRAPHENE

Two parabolic bands characteristic of bilayer graphene
lead to the following integrals entering the expression for the
current density (24):

I2n(κ) =
∫

dkxdkykx

× θ

{
εF − δ2,nt⊥ − v2

F �
2
[
(kx + κ)2 + k2

y

]
t⊥

}
. (C1)

In order to evaluate these integrals, we perform the same
substitution as in the calculation of I11, kx + κ = k̃x and

ky = k̃y . Thus, (C1) takes the form

I2n(κ) =
∫

dk̃xdk̃y(k̃x−κ)θ

(
εF − δ2,nt⊥ − v2

F �
2
(
k̃2
x + k̃2

y

)
t⊥

)

= −κπ
(εF − δ2,nt⊥)t⊥

v2
F �2

θ (εF − δ2,nt⊥). (C2)

In the case of trilayer graphene, the current density is

jx = −
√

2ev2
F �

π2t⊥
e−t/τ

∫ t

−∞

dt ′

τ
et ′/τ [I31(κ) + I33(κ)]

− evF

π2
e−t/τ

∫ t

−∞

dt ′

τ
et ′/τ I32(κ), (C3)

where

I3n(κ) =
∫

dkxdkykxθ

{
εF − δ3,n

√
2t⊥

− v2
F �

2
[
(kx + κ)2 + k2

y

]
√

2t⊥

}
(C4)

for n = 1,3 and I32(κ) = I11(κ) [see Eq. (6)]. Using this
and the similarity between the integrals I31,I33 and I21,I22

(replacing t⊥ → √
2t⊥), we obtain the final expression for the

current density given in the text.
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