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We extend the simple and efficient lowest order expansion (LOE) for inelastic electron tunneling spectroscopy
(IETS) to include variations in the electronic structure on the scale of the vibration energies. This enables
first-principles calculations of IETS line shapes for molecular junctions close to resonances and band edges.
We demonstrate how this is relevant for the interpretation of experimental IETS using both a simple model and

first-principles simulations.
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The inelastic scattering of electronic current on atomic
vibrations is a powerful tool for investigations of con-
ductive atomic-scale junctions. Inelastic electron tunneling
spectroscopy (IETS) has been used to probe molecules on
surfaces with scanning tunneling microscopy (STM) [1],
and for junctions more symmetrically bonded between the
electrodes [2—7]. Typical IETS signals show up as dips or peaks
in the second derivative of the current-voltage (/-V) curve
[8]. In many cases the bonding geometry is unknown in the
experiments. Therefore, first-principles transport calculations
at the level of density functional theory (DFT) in combination
with nonequilibrium Green’s functions (NEGF) [9-14] can
provide valuable insights into the atomistic structure and IETS.
For systems where the electron-vibration (e-vib) coupling is
sufficiently weak and the density of states (DOS) varies slowly
with energy (compared to typical vibration energies) one can
greatly simplify calculations with the lowest order expansion
(LOE) in terms of the e-vib coupling together with the wide-
band approximation (LOE-WBA) [10,15]. The LOE-WBA
yields simple expressions for the inelastic signal in terms
of quantities readily available in DFT-NEGF calculations.
Importantly, the LOE-WBA can be applied to systems of
considerable size.

However, the use of the WBA cannot account for IETS sig-
nals close to electronic resonances or band edges, which often
contains crucial information [16,17]. For example, a change
in IETS signal from peak to peak-dip shape was recently
reported by Song et al. [6] for single-molecule benzene-dithiol
(BDT) junctions, where an external gate enabled tuning
of the transport from off-resonance to close-to-resonance.
Also, high-frequency vibrations involving hydrogen appear
problematic since the LOE-WBA is reported to underestimate
the IETS intensity [18].

Here we show how the energy dependence can be included
in the LOE description without changing significantly the
transparency of the formulas or the computational cost. We
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describe how the generalized LOE differs from the original
LOE-WBA, and demonstrate that it captures the IETS line
shape close to a resonance. We apply it to DFT-NEGF
calculations on the resonant BDT system and to off-resonant
alkane-dithiol junctions, and show how the improved LOE is
necessary to explain the experimental data.

Method. We adopt the usual two-probe setup with quantities
defined in a local basis set in the central region (C) coupled to
left/right electrodes (¢« = L, R). We consider only interactions
with vibrations (indexed by A with energies hw, and e-vib
coupling matrices M,) inside C. To lowest order in the e-
vib self-energies X, (second order in M, ) the current can
be expressed as a sum of two terms [(V) = I, + I;, using
unperturbed Green’s functions G = G’ defined in region C
[10,15],

G )
[e — ?0/ de {fL(g) — fR(s)} {Tr[G’I’LG“I'R](S)

+ 2Re Tr[G" 2, G' T, G Tk]()} , (1)

G o0
L= f deTHEFG 25 G — B2 G E5G1(e), (2)
€ J_x

where Gy = 2¢?/h is the conductance quantum and sum-
mation over the vibration index A is assumed. The e-vib
self-energies X, are expressed as

E3(e) = ML {(N; + DGZ(e5) + Ny G2(e)IM;,  (3)

30e) = +4{E7(6) — T (e)) — ’EH[Z: — 351, (@)

with 1 = & £ hw,, bosonic occupations N,, and H denoting
the Hilbert transform. Finally, the lesser/greater Green’s
functions G describing the occupied/unoccupied states

G2(e) = Fi {fL(FO)AL(E) + fr(FOAR(E)}  (5)

are given by the spectral density matrices A, = G'T,G* for
left/right moving states with fillings according to the reservoir
Fermi functions f,(g) = np(e — 1q).
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The above equations are numerically demanding because
of the energy integration over voltage-dependent traces. In the
following we describe how further simplifications are possible
without resorting to the WBA. Here we are interested in the
“vibration signal” that is the change in the current close to
the excitation threshold |eV| ~ hw,, witheV = u; — ug. As
IETS signals are obtained at low temperatures, we assume that
this is the smallest energy scale kg T <K hw;,,I", where I' is the
typical electronic resonance broadening. The inelastic term /;

[Eq. (2)] then reduces to
G h h Vv o

I ~ i Z (coth o _ coth cm—l—_oe)/ deTr
2e = —0

2kpT 2kpT

X [MLAL(e)MyAR(e){ f1(6) = fr(Eo)), (6)

where A, = G“T',G’ is the time-reversed version of A,. In
the second derivative of I; with respect to voltage V, the coth
parts give rise to a sharply peaked signal around |eV| = hw;,
with width of the order of k3 T. If the electronic structure (A,)
varies slowly on the kg T scale, it can be replaced by a constant
using € & up and &, & g = [ + o hw;,. Thus, around the
vibration threshold we get

Wl ~ v 0yITY™, (7

Vio = TrIMGAL ()M AR (1R)], (¥

where we, as in the LOE-WBA, define the ‘“universal”
function

Go

9™ = 2 Z o(hw; +oeV)
¢ o=+
h h Vv
x | coth e coth fuv, +oeV . ©)]
2kgT 2kgT

The elastic term [, [Eq. (1)] can be divided into two
parts, I, = I + 1 eh, where the first (latter) represents all terms
without (with) the Hilbert transformation originating in Eq. (4).
The “non-Hilbert” part I yields a coth factor and integral of
similar in form to the one for /;. Both /; and I} thus yield
an inelastic signal with a line shape given by the function
B‘Z,ZW“‘ and the sign/intensity governed by y, = ¥ix + Ve.rs
with y,, ~ ImB,, and

By, = TrIMy Ar(u )T ()G ()M Ar(1Lr)
—M, G (WR)T L (ur)Ar(LR)M AL ()] (10)

The “Hilbert” part I" requires a bit more consideration.
Besides terms which do not result in threshold signals [19],
we have terms involving H[A, f,]. Again, if A, varies slowly
around the step in f, we may approximate

HIAG(e) fu(eN](e) ~ Ag(eYHI fule)](e) - an

The Hilbert transformation of the Fermi function is strongly
peaked at the chemical potential, and again we evaluate the
energy integral by evaluating all electronic structure functions
(Ay,G",T,) at the peak values, keeping only the energy
dependence of the functions related to f, inside the integral.
The result is

LM ~ 1, TT™™, 12
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with k, = 2ReB; and, again as in the LOE-WBA, the universal
function

G +00
™M = 2—2 f deH{f(eL) = fEDENf(e —eV)— f(e)]

eV + o hw,

o, 13)

Go
N —— E Vv hay)1
om G:ia(e + o hw;)ln

Here the latter is for kg T = 0, while it can be expressed using
the digamma function for finite kg7 [20]. In total we have
written the IETS as a sum of individual vibration signals [10],

W I(V) = v, 9, TY™(V,hw;, T,N;)
+ 16, B T™(V  hav,, T). (14)

Equation (14) is our main formal result. As for the LOE-WBA
we have expressed the vibration signals from the universal
functions, and structure factors containing quantities readily
obtained from DFT-NEGF. However, importantly, here we
have generalized these to include the effect of finite hw;,
and thus the change in electronic structure over the excitation
energy. Our LOE expressions for y, and k, above simply
reduce to the LOE-WBA when pu; = ug = po. We will
now demonstrate some situations where the LOE expression
Eq. (14) is crucial for detailed interpretation of experimental
IETS line shapes.

Simple model. First we use a single-level model to illustrate
how the “asymmetric” term contains important information
about the energy dependence of the electrode couplings. In the
LOE-WBA one always has «, = 0 for symmetric junctions.
This is not the case for the LOE expression Eq. (10). We
therefore consider a symmetric junction containing a single
electronic level at gy (with iy = 0), coupled to alocal vibration
(wo), and with energy-dependent electrode coupling rates.
Assuming symmetrical potential drop, and using the notations
[} =Tp(ur) + Cr(ur) and Ty = Up(ugr) + Cr(pg) we can
write the “symmetric,”

y = —C{IT? — (4c% — Pe})’}, (15)
and “asymmetric” coefficients,
Kk =4CT &g + T ha) T T, — (4§ — Pwg)},  (16)

where ST’ =T, — I, I' = (I'; + T,)/2, and C is a constant
common to y and k. In the typical case of transition metal
electrodes the coupling can contain contributions both from
a wide s band as well as from a narrow d band leading to a
significant 6I" and finite . To model the s band we use a con-
stant Iy, and to mimic the coupling (hopping ') to a d band we
add the self-energy of a semi-infinite 1D chain, with bandwidth
2W centered at uo = 0. Figures 1(a)—1(c) compare the signals
calculated from LOE-WBA and LOE for different &y. For both
treatments we observe that the peak in the off-resonance IETS
evolves into a dip on-resonance. However, only in the LOE
the two regimes are separated by a peak-dip structure close
to resonance due to the asymmetric «, which is enhanced at
the onset of the coupling with d band in one electrode. The
change in IETS signal with a gate-potential (gy) is shown
in Fig. 1(d). The features observed at ey = +hw/2 — W is
associated with the level being resonant with the left/right
d-band onset, respectively, see Fig. 1(e).
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FIG. 1. (Color online) (a)—(c) IETS spectrum from LOE (solid)
and LOE-WBA (dashed) for three different position of an electronic
level, coupling with a wide s band with constant density of states,
and a narrow d band with bandwidth W centered at the equilibrium
Fermi level pg = 0. (a) &g = —2.6, (b) &g = —2, and (¢) &g = 0. The
transmission coefficients at the Fermi level are T = 0.006,0.01,1,
respectively. (d) Contour plot of the IETS spectrum for different level
positions. The signal is normalized such that for each given &, the
height of the largest peak or dip is 1. Parameters in unit of the vibration
energy hwo: t' =2t =W =2,y =0.1, kyT = 0.02. Here ¢ is the
hopping matrix element of the d band, and ¢’ is its coupling to the
electronic level. (e) Schematics of the one-level model (shown for
the three different level positions) biased at the emission threshold
V= ha)().

IETS of benzene-dithiol. It has been possible to apply an ex-
ternal gate potential to junctions with small molecules between
metallic electrodes [5,6]. Under these conditions IETS have
been recorded for gated octane-dithiol (ODT) and benzene-
dithiol (BDT) molecules between gold electrodes [6]. For
both ODT and BDT the quite symmetric /-V characteristics
indicates a symmetric bonding to the electrodes. For the
m-conjugated BDT it was shown how the transport can be
tuned from far off-resonance (G ~ 0.01Gg) to close to the
HOMO resonance increasing the conductance by more than an
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order of magnitude. As in the simple symmetric model above,
this was reflected in the shape of the IETS signal for BDT going
from a peak for off-resonance, to a peak-dip close to resonance,
with the peaks appearing at the same voltages. However, the
analysis by Song et al. [6] was based on a model assuming
asymmetric electrode couplings at zero bias (STM regime)
[16]. Our simple model [Fig. 1(b)] instead suggests that the
observed peak-dip line shape originates solely from the I';,I",
asymmetry driven by the bias voltage near resonance rather
than from asymmetric electrode couplings in equilibrium (I'z,
g at wo).

Next, we turn to our DFT-NEGF calculations [21]. The
importance of an efficient scheme is underlined by the fact
that an IETS calculation is required for each gate value. In
the break-junction experiments the atomic structure of the
junction is unknown. We anticipate that the gap between the
electrodes is quite open and involves sharp asperities with
low-coordinated gold atoms in order to allow for the external
gating to be effective. In order to emulate this we consider BDT
bonded between adatoms on Au(111) surfaces [Fig. 2(a)], and
employ only the I" point in the transport calculations yielding
sharper features in the electronic structure. We correct the
HOMO-LUMO gap [22] and model the electrostatic gating
simply by arigid shift of the molecular orbital energies relative
to the gold energies. In Figs. 2(b) and 2(c) we compare IETS
calculated with LOE and LOE-WBA as a function of gating.
As in the experiment, we observe three clear signals around
hw = 95,130,200 meV due to benzene vibrational modes.
Off-resonance the LOE and LOE-WBA are in agreement
as expected. But when the gate voltage is tuned to around

¢ ~ —1 V the methods deviate because of the appearance
of sharp resonances in the transmission around the Fermi
energy [Fig. 2(a)]. These resonances involve the d orbitals
on the contacting gold atoms, as seen in the eigenchannel
[23] plot in Fig. 2(a), and result in a peak-dip structure as
seen in the experiment and anticipated by the simple model.
Thus it is important to go beyond LOE-WBA in order to
reproduce the peak to peak-dip transition taken as evidence
for close-to-resonance transport.

IETS of alkane-dithiol. As another demonstration of the
improvement of LOE over LOE-WBA, we consider molecular
junctions formed by straight or tilted butane-dithiol (C4DT)
molecules linked via low-coordinated Au adatoms to Au(111)
electrodes, see inset to Fig. 3. Based on DFT-NEGF [21]
we calculate elastic transmission and IETS for the periodic
structure averaged over electron momentum k| [24]. As shown
in Figs. 3(a) and 3(b), transport around the Fermi level is
off-resonance but dominated by the tail of a sulfur-derived peak
centered at approximately 0.25 eV below the Fermi level. This
feature introduces a relatively strong energy dependence into
the electronic structure which makes the WBA questionable.
Indeed, as shown in Fig. 3(c), LOE-WBA gives a smaller IETS
intensity compared to the LOE for the energetic CH; stretch
modes (hw ~ 375 meV). The WBA may thus be the reason
why LOE-WBA calculations were reported to underestimate
the IETS intensity for these energetic modes in comparison
with experiments [18]. We note that the intensity enhancement
is found to be more pronounced for the straight configuration,
which we speculate may be related to the change in the sulfur
density of states as a function of tilt (for the tilted geometry
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FIG. 2. (Color online) (a) BDT between two adatoms on Au(111)
together with transmission for off-resonance (zero gate) and close-
to-resonance. (b) IETS as a function of gate voltage from LOE
(left) and LOE-WBA (right). (c) IETS for fixed gate voltage off-
resonance (dashed lines, offset for clarity) and close-to-resonance
(solid lines). Black: LOE, red: LOE-WBA. The IETS signals are
calculated for 7 = 4.2 K and processed to mimic the experimental
broadening arising from the lock-in technique with a harmonic
voltage modulation of Vi, = 1 mV [13].

the slope of the PDOS close to the Fermi level decreases). The
intensity change reported in Fig. 3 thus suggests the relevance
of going beyond LOE-WBA for simulations involving high-

energy vibrational modes.
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FIG. 3. (Color online) (a) Transmission and (b) projected density
of states over S for vertical and tilted C4DT in a 2 x 2 supercell of
Au(111). (c) IETS within LOE and LOE-WBA (averaged over k)
using 7 = 4.2 K and Vi, = 5 mV [13]. Thin dashed lines represent
the reverse bias polarity.

Conclusions. A generalized LOE scheme for IETS sim-
ulations with the DFT-NEGF method has been described.
Without introducing the WBA, our formulation retains both the
transparency and computational efficiency of the LOE-WBA.
This improvement is important to capture correctly the IETS
line shape in situations where the electronic structure varies
appreciably on the scale of the vibration energies, such as near
sharp resonances or band edges. Together with DFT-NEGF
calculations we have discovered that the intricate experimental
line shape of a gated BDT can be explained without the
need to assume asymmetric bonding of the molecule to the
electrodes. Also, simulations for C4DT junctions suggest that
going beyond WBA is important to capture the IETS intensity
related to energetic CH, stretch modes.
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