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Large and stable band gaps in spin-polarized graphene antidot lattices

Mads L. Trolle,1,* Ulrik S. Møller,1 and Thomas G. Pedersen1,2

1Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg East, Denmark
2Center for Nanostructured Graphene (CNG), Aalborg University, DK-9220 Aalborg East, Denmark

(Received 7 June 2013; published 15 November 2013)

Introducing a periodic array of holes, i.e., an antidot lattice, in a graphene sheet has been suggested as a route
towards the tantalizing objective of “opening the gap” in this otherwise zero-gap semiconductor. Combining
density-functional and mean-field Hubbard tight-binding methods, we study the effect of spin polarization on
graphene antidot lattices (GALs). Focusing on GALs with extended zigzag edges, we systematically investigate
the geometry dependence of spin polarization, electronic structure, and band gaps. A scaling law for the band gap
is established, demonstrating marked deviations from that of circular holes without spin polarization. Furthermore,
we estimate the robustness of the magnetic ordering against raised temperature and doping and, finally, consider
how the optical properties are modified by spin polarization. Our results demonstrate that large, stable band gaps
are expected for a range of geometries.
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I. INTRODUCTION

Graphene is today one of the most intensively studied
novel materials with promising applications within, e.g.,
flexible two-dimensional electronics or transistor technology.1

These capabilities are facilitated by the extraordinary room-
temperature electron mobility2 in excess of 105 cm2 V−1 s−1

of exfoliated graphene. Importantly, graphene can now be
synthesized on wafer scale using chemical vapor deposition
techniques.3 However, one of the shortcomings of graphene
remains its vanishing band gap, limiting applications as a sub-
stitute for the materials used today in semiconductor devices.
Several strategies, including confinement in nanoribbons4–6

and biased bilayer structures,7,8 have been suggested with the
ultimate goal of “opening the gap.” Also, periodic arrays of
holes, so-called graphene antidot lattices (GALs), have been
proposed as a route towards large-scale gapped graphene.9

Since their proposal, the physical properties of GALs have
been the subject of intense theoretical research, focusing
on, e.g., their electronic structure,10–20 optical properties,21

or transport capabilities.22–26 Many of these calculations
are, with some exceptions,11,14,15,17–20 performed neglecting
effects of spin polarization, even though this phenomenon has
been demonstrated in recent experiments on zigzag graphene
nanoribbons (ZGNRs) using scanning tunneling spectroscopic
methods.27 Quite generally, extended regions of zigzag edges
in graphene nanostructures favor spin polarization. This is
readily observed by inclusion of a mean-field Hubbard inter-
action in a tight-binding scheme, which modifies the electronic
structure drastically near the band gap.28–31 In fact, neglecting
spin polarization, ZGNRs are semimetals characterized by
two degenerate, dispersionless bands at the Fermi level,
developing a band gap of several hundred meV with inclusion
of a Hubbard-type interaction—a trend also supported by
more complex ab initio approaches based on, for exam-
ple, density-functional theory,5,6 configuration interaction,32

density-matrix renormalization-group methods,33 or quantum
Monte Carlo simulations.34,35 While the existence of band
gaps in GALs with no spin polarization can be reasoned
from band-folding arguments based on the periodicity of
the superlattice,10 band gaps induced by spin-polarized GAL

zigzag edges cannot be understood by such simple consider-
ations, requiring instead atomistic calculations similar to the
ones mentioned above.

The near-perfect zigzag edges necessary for supporting
spin polarization in the aforementioned experiment can be
attributed to the production of the ZGNRs by “unzipping”
carbon nanotubes. While any edges realistically produced in
GALs, usually fabricated by lithographic methods,36–39 are
considerably more disordered, postprocess annealing has been
shown to reconstruct disordered edges of single holes into
zigzag or armchair shapes,40,41 making extended regions of
these two edge types experimentally feasible. Additionally,
very recent experimental results suggest that fabrication of
GALs with hexagonal holes of preferably zigzag character may
be possible by anisotropic edging techniques.42 Furthermore,
magnetic force microscopy has revealed spin-polarized zigzag
edges in hexagonal GALs on the 100 nm scale fabricated
using a nanoporous alumina template.43 Thus, with other GAL
fabrication techniques approaching the 10 nm regime,36,37

special attention towards the theoretical understanding of the
magnetic properties and resulting band-gap modulations of
antidots with extended zigzag edges is warranted.

GALs containing a dissimilar number of atoms in the A and
B sublattices are by Lieb’s theorem44 predicted to display a net
magnetic moment in their ground state, and extensive work has
been done on the microscopic modeling of these ferromagnetic
systems.15,19,45 In addition, GALs with an identical number of
A and B atoms are reported to display local spin polarization
at zigzag edges, even though their net magnetic moment
vanishes.15,17 However, this occurs only for larger holes with
smaller ones remaining completely unpolarized.45 To our
knowledge, no systematic study has been performed on the
antiferromagnetic spin ordering of GALs with hexagonal holes
of varying dimensions, and we therefore here consider spin
polarization in two families of GALs with hexagonal holes
in a triangular lattice. These antidots might be envisaged as
particularly well ordered reconstructions of roughly circular
holes into ones dominated by zigzag edges. Also, this is
exactly the structure used by Shimizu et al. to interpret their
experimental results; see Fig. 1. We follow the nomenclature of
Ref. 13 and denote such lattices, for which all lattice vectors are
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FIG. 1. (Color online) Excerpt of a triangular GAL with hexag-
onal holes. W , S, and L represent the subribbon width, edge length,
and unit-cell size, respectively, whereas �a1 and �a2 are GAL lattice
vectors parallel to carbon-carbon bonds. The edges are zigzags of
alternating carbon atoms from the A and B sublattices illustrated by
blue and red atoms, respectively. The dashed line indicates the unit
cell.

oriented parallel to carbon-carbon bonds as “triangular” GALs.
Calculations neglecting spin-polarization have predicted these
structures to be semiconducting with band gaps decreasing
with increasing unit cell size (i.e., with holes constituting a
smaller fractions of the unit cell).11,23 However, upon rotating
the holes further by π/6 around the hole center axes, making
the angle between GAL lattice vector and carbon-carbon bond
π/6, only structures with a unit cell edge length of (3n + 3)a0

(n an arbitrary integer and a0 the graphene lattice constant)
were found to retain a sizable band gap.10,13 Following Ref. 13,
we term these “rotated triangular” GALs, and the question
remains to what extent this simple rule for band-gap opening
transfers to the spin-polarized case.

In this paper, we seek to identify the geometrical require-
ments for GALs supporting spin polarization, and furthermore
consider the effects on the electronic structure of GALs with
unit cells and holes on the nanometer scale. The limits of
small and large holes resemble spin-unpolarized graphene and
spin-polarized ZGNRs, respectively, and we therefore aim to
identify the critical size for the transition. Hence, the minimum
edge length required will be identified for both lattice types.
We seek to identify to what extent simple rules for band-gap
opening found neglecting spin magnetization remain valid in
the spin-polarized cases. Additionally, we consider the stability
of the polarization with respect to raised temperatures and
chemical doping and finally consider the modulation of the
linear optical spectra due to inclusion of spin. The applied
theoretical frameworks will be presented in the following
section. Then, results for the magnitude and stability of the spin
polarization and band gaps are shown in Sec. III along with
the optical response. Finally, conclusions are given in Sec. IV.

II. METHODS

Hexagonal graphene antidots in a triangular lattice can
be characterized by a unit-cell edge length parameter L and

hole edge length S, both in units of a0. These are defined
as the number of zigzags along the edges shown in Fig. 1
for triangular GALs, agreeing with the nomenclature of,
e.g., Refs. 13, 23, and 45, making the illustrated GAL an
{L = 10,S = 7} structure. Alternatively, the structure can be
envisaged as consisting of interconnected zigzag subribbons
of length S and width W = L − S, the latter indicating the
number of armchairs, each of length

√
3a0, connecting the two

subribbon edges indicated in Fig. 1. Hence, the limiting case
of large S should approach the case of infinite ZGNRs of width
W , whereas the case of small S approaches pristine graphene
with no spin polarization. This means that a transition region
in S and L must exist where the ground state evolves from
having a vanishing spin polarization to having a finite one.

We apply a model based on density-functional theory
(DFT) in the local spin-density approximation (LSDA) as
implemented in the SIESTA package46 to investigate structures
with small unit cells. We verify its agreement with a much
simpler mean-field Hubbard tight-binding model, and use this
to consider structures with unit cells of several thousand atoms
beyond the scope of DFT. Here, characteristic properties such
as optical gaps and spin polarization become asymptotic,
allowing for extrapolation to the behavior of even larger
systems.

A. Density-functional theory model

In the DFT model, all dangling bonds are hydrogen
terminated, removing them from the band gap. A double-ζ
basis, with an extra polarized term and Troullier-Martins
pseudopotentials47 with only 2s and 2p electrons treated as
valence for carbon, are used. Exchange and correlation is
handled in the Perdew-Zunger parametrization.48 A modest
2 × 2 × 1 Monkhorst-Pack k grid was found to be sufficient
for k-space integration due to the relatively flat bands and
semiconducting nature of the GALs investigated, except for
the specific case of S = 5 where the spin polarization was
found to vanish with increasing k-grid sampling, making
an 8 × 8 × 1 grid necessary. Additionally, several hundred
iterations were required to fully converge the spin densities
of S = 5 structures, whereas only tens of iterations were
necessary with S �= 5. A reciprocal wave vector cutoff of 150
Ry was found to be sufficient. Unrelaxed structures with ideal
carbon-carbon and hydrogen-carbon bond lengths respectively
2.46/

√
3 Å and 1.09 Å were used.

B. Hubbard tight-binding model

Generally, the out-of-plane π -electron system of planar
conjugated carbon structures decouples from the in-plane σ

system, and since the π electrons govern optical and electronic
properties of the states in the vicinity of the Fermi level
we include these only in the Hubbard tight-binding (HTB)
treatment. In the mean-field (Hartree-Fock) approximation,
the Hubbard Hamiltonian becomes

Ĥ =
∑

i,j,σ

tij ĉ
†
iσ ĉjσ + U

∑

i,σ

n̂iσ 〈n̂i,−σ 〉, (1)

where ĉiσ and ĉ
†
iσ are, respectively, annihilation and creation

operators of electrons in atomic π orbitals at lattice site
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i with spin σ . tij is the tight-binding hopping parameter
between sites i and j , whereas U is the Hubbard interaction
parameter coupling the −σ spin density 〈n̂i,−σ 〉 to the σ density
through the occupation number operator n̂iσ = ĉ

†
iσ ĉiσ . In the

following, we take U = 2.0 eV and include up to third-nearest-
neighbor interactions using hopping integrals t1 = −2.7 eV,
t2 = −0.2 eV, and t3 = −0.18 eV. These Hubbard and tight-
binding parameters were previously shown to convincingly
reproduce DFT LSDA results for ZGNRs,49 and we here
confirm that they are transferable to GAL structures by
comparison with our SIESTA model. Long-range Coulomb
interaction, treatable in the extended Hubbard scheme, has
been shown to map onto the purely local Hubbard model used
here by introduction of an effective and filling-independent (at
least in the doping rang considered here) Hubbard parameter.50

Thus, we expect the HTB model to generate results comparable
to DFT LSDA results for large GAL structures.

Using the HTB Hamiltonian, the initially antiferromag-
netic densities are iterated to self-consistency. We note
that quantum fluctuations arising from electron correlation
effects not included in mean-field models can be important
in strongly correlated graphene systems. However, good
agreement between the quantum Monte Carlo and mean-field
approaches to the Hubbard model has been demonstrated for
graphene nanoribbons of moderate width W > 3 and Hubbard
parameters comparable in magnitude to the nearest-neighbor
hopping integral.34,35 In particular, an almost quantitative
agreement for low-energy excitation features was found.34

Thus, since the Hubbard U applied by us belongs to this
range and since we mainly use the Hubbard model for large
structures, we expect the mean-field approach to be a good
approximation.

III. RESULTS AND DISCUSSION

As already discussed, at sufficiently large S the GALs
under investigation are expected to display antiferromagnetic
behavior akin to what is observed for ZGNRs. This is indeed
what we find, with an example shown in Fig. 2 where
antiferromagnetic ordering is seen with respect to the A and
B sublattices indicated by blue and red atoms in Fig. 1. At
the armchair corners joining two oppositely polarized edges,
polarization is strongly suppressed, while a maximum is found
at the edge center atom. All spin-polarized GALs investigated
here follow this general trend, and below we present a
systematic investigation of the influence of the dimensions
(i.e., W and S) on spin polarization and band gaps. However,
we first make some general comments on the modulation of
the electronic structure upon including spin polarization in the
problem.

In Fig. 3, we display the density of states calculated for
each spin projected onto the edge atoms of the A sublattice
PA(E,σ ) for a W = 2 structure and a few edge lengths. Note
that the same quantity for the B sublattice is found by simply
interchanging the spin index due to the antiferromagnetic
symmetry of the sublattices, as can be readily seen from
the spin-density difference in Fig. 2. By inspection of the
electron wave function, the edge localization of the states
nearest the band gap was confirmed, and it is clearly observed
by comparison with the total density of states D(E) that these
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FIG. 2. (Color online) Spin polarization of {W = 2,S = 8} trian-
gular GAL, comparing the z-integrated DFT density with the on-site
HTB density. Note that the DFT density is plotted as a contour plot,
with contour lines at values shown in the left bar, while the HTB
model is a scatter plot, with dot sizes and colors indicating the on-site
Hubbard spin-density difference.

dominate in this energy region. Additionally, at S > 5 the
edge states become spin polarized with a clear difference in
up and down densities. Interestingly, the opposite polarization
is observed for edge states just above the band gap, hinting
at why spin polarization is suppressed by occupying the
lowest conduction-band states by, e.g., doping. Furthermore,
only states near the band gap are polarized, while states
with significant weight near the edges extending further into
the valence-/conduction-band range remain unpolarized. This
trend can be seen by comparing the weakly polarized [i.e.,
small difference between PA(E,↑) and PA(E,↓)] peaks near
−0.35 eV for the S = 8 structure in Fig. 3 with the strongly
polarized peaks near −0.18 eV, where the projected density of
states is almost exclusively spin down.

In order to systematically quantify the degree of spin-
polarization in the investigated GALs, we use “maximum
spin polarization.” In general, this value is simply the absolute
spin-density difference (on-site occupation for the HTB model
and out-of-plane integrated density for the DFT model) found
at the middle of (any) subribbon edge.

A. Spin polarization and band gap

In Fig. 4, we consider the scaling of the maximum spin
polarization (lower panel) and band gap (upper panel) with
edge length S and width W . We find a characteristic length
of S = 5 above which structures of all widths W are spin
polarized. Both DFT and HTB results display this behavior,
which can simply be interpreted as a competition between
the energy gain due to polarization of the zigzag subribbons
and the energy penalty of polarizing the armchair corners.
Given the good agreement between DFT and HTB results,
and the fact that they both predict the same characteristic
length, we are confident that the HTB model faithfully
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FIG. 3. (Color online) Density of states calculated using our HTB
model for a few triangular GALs, with subribbon width W = 2
and varying edge length S, projected onto the edge atoms of the
A sublattice (red and black curves) in addition to the total density of
states (green curve).

reproduces DFT results also for larger structures. We note
that Ref. 17 reports DFT calculations showing a weakly
spin-polarized S = 5 structure, in contrast to our findings.
However, their calculations were performed using a 2 × 2 × 1
k-point sampling, which we found insufficient, as discussed
previously.

As demonstrated in the upper panel of Fig. 4, the onset of
spin polarization coincides with a dramatic opening of the band
gap in comparison to the unpolarized case for S > 5. Hence,
spin polarization breaks the tendency of decreasing band gap
with S and leads to gaps tending asymptotically to values
resembling those of spin-polarized infinite ZGNRs of similar
widths W reported in, e.g., Refs. 5 and 49. Thus, the band
gaps predicted by us are in the same range as those generally
considered realistic for nanostructured graphene systems in
DFT studies, and the HTB model ensures the correct limiting
behavior for L/W 	 1. Conversely, in calculations excluding
Hubbard interaction [i.e., setting U = 0 eV in Eq. (1)] the
band gap decreases monotonically with increasing S, although
with weak oscillations at S > 10 due to confinement effects
depending on edge lengths. Hence, the band gaps of even
relatively large GALs are expected to be on the order of
hundreds of meV, as opposed to our previous predictions for
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FIG. 4. (Color online) Band gap (top) and maximum spin polar-

ization (bottom) of triangular GALs of varying dimensions calculated
using the Hubbard model. The band gap is seen to vanish with
increasing hole size for fixed W if spin is neglected (dash-dotted
lines). However, the Hubbard interaction term introduces a finite band
gap resembling those of ZGNRs, shown in the shaded region, for large
hole sizes. A band-gap increase is seen at edge lengths S larger than
5 for all structures, matching the onset of spin polarization. DFT
results are shown in the insets, where the onset of spin polarization
is in full agreement with the HTB model. Additionally, the DFT and
HTB band gaps are in reasonable agreement, with the position of the
band-gap minimum near S = 5 reproduced by both methods.

circular holes without spin polarization,9 enforcing the idea of
utilizing GALs in semiconductor devices.

For circular, unpolarized holes, a simple scaling law
was proposed by Pedersen et al.9 for the band gap Eg ≈
αN

1/2
rem/Ntot, with Nrem indicating the number of atoms re-

moved from a unit cell that would otherwise contain Ntot

atoms and α a fitting parameter. For the present case, in which
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FIG. 5. (Color online) Comparison of the tight-binding models
including (HTB) and neglecting (TB) Hubbard interaction with
scaling rule of Ref. 9 (full black line).

N
1/2
rem/Ntot = S/[

√
6(W + S)2], we note that the band-gap

dependency follows such a simple scaling law only for the
smallest holes as demonstrated in Fig. 5. In the original work,
α = 25 eV was found by fitting to tight-binding band gaps
for circular holes, whereas α was set to values ranging from
∼4 to 25 eV by Liu et al.,15 allowing fits to triangular and
rhombus-shaped holes. Hence, this law is widely used as a
benchmark for comparing band gaps in GALs of varying
geometries. For very small holes, S = {1,2}, a good fit can
be made to our results using α = 19 eV (shown as the black
line of Fig. 5) for a wide range of unit-cell sizes L. However,
with edge lengths S > 2 this tendency is broken. By adjusting
the value of α and introducing corrections similar to those
in Ref. 15 reasonable fits in a large range of L can still be
obtained for 2 < S < 6. At S > 5, spin polarization sets in
which increases the band gap, causing a nonlinear behavior in
N

1/2
rem/Ntot clearly seen near N

1/2
rem/Ntot = 0.04 for the S = 6

structure. Hence, for structures with larger holes (S > 5),
significant deviations between the simple scaling law and
our results are found, becoming increasingly severe with hole
size. In the limit of very small holes, however, the simple
scaling law does seem to hold, as is seen in the left panel of
Fig. 5. In this regime, inclusion of spin polarization actually
improves the agreement between the scaling law and the tight-
binding models. For the structures produced experimentally
by Shimizu et al.,43 we can estimate N

1/2
rem/Ntot ∼ 10−3 based

on the atomic force microscopy images presented in that
letter. Other fabrication techniques, such as block copolymer
methods,36 allow N

1/2
rem/Ntot ∼ 0.01. Hence, experimentally

available structures are well within the regime considered
here. However, we do not expect structures with extended
zigzag edges to follow the above scaling law. Rather, band
gaps in such structures must approach those of the nanoribbons
comprising the structure. For example, the case of large S and
modest W is better described by the scaling rule presented

in Ref. 5: Eg ≈ (9.33 eV Å)/(w + 15.0 Å) for band gaps in
spin-polarized, infinite graphene zigzag nanoribbons of width
w = W

√
3a0.

In Ref. 15, results for rhombus-shaped holes in a triangular
lattice with zigzag edges calculated using a nearest-neighbor
Hubbard tight-binding model were reported. There, a band
gap increase from ∼250 to ∼500 meV with hole side length
varying from 5a0 to 10a0 for constant unit-cell side length
14a0 was found. The opposite holds true for increasing
unit-cell size (between 10a0 and 15a0) with constant hole
side length (5a0). Additionally, they found the ground state
to be antiferromagnetically spin polarized. These results agree
closely with ours, even though their calculations are performed
for rhombus-shaped holes.

Hence, the existence of a relatively short edge length over
which spin polarization becomes a dominating effect suggests
that this may indeed not be negligible in experimentally
feasible systems. The question remains, however, how robust
this magnetic ordering is against, e.g., temperature increase
and doping levels, as will be discussed below.

B. Band-gap rules for rotated holes

In Ref. 13, Petersen et al. formulated a semiempirical rule
stating that only every third rotated triangular GAL displays
a significant band gap, requiring L = 3n + 3, where n is an
integer and the unit-cell size L for the rotated structure is
defined as the number of zigzags along the unit-cell edge
indicated in Fig. 6. Similarily, Ouyang et al.16 observed
an alternating semiconducting/metallic behavior of triangular
GALs with hole separation distance. Recently, Liu et al.10

demonstrated that these results are particular realizations of
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FIG. 6. (Color online) Band gaps of a few rotated triangular GALs
calculated using the HTB model. Structures which are metallic in the
absence of Hubbard interaction are denoted by circles as indicated
by the “M” in the legend, whereas squares indicate semiconducting
structures, denoted by “S” in the legend. The full and dashed
lines indicate results including and excluding Hubbard interaction,
respectively. The inset illustrates the unit cell (full black line) of the
rotated triangular structure, together with the side length parameters
S and L, in addition to a width parameter W = L − 2S.
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a universal rule governing band-gap opening in all triangular
superlattices spanned by integer combinations of graphene
lattice vectors. We have considered a range of rotated triangular
unit cells, both including and excluding Hubbard interaction,
and verify this rule in the latter case. However, upon including
Hubbard interaction the rotated triangular structures are found
to be antiferromagnetically spin polarized, breaking the A-
B sublattice symmetry. This, in turn, induces a band gap
comparable to those in Fig. 4.

This is exemplified by the results in Fig. 6. No common
threshold edge length S, above which all structures are spin
polarized, could be found for these structures. Instead this
threshold depends on the width parameter W , in contrast to
what is observed in Fig. 4. The spin polarization (not shown)
increases abruptly exactly at edge lengths where the band gaps
including and excluding Hubbard interaction diverge, as in
Fig. 4. Band-gap openings similar to the ones observed here
are expected for other structures, which is why care should
be taken in generalizing the aforementioned band-gap rules
to any structure containing extended, possibly spin-polarized
zigzag edges.

C. Doping and temperature effects

Band gaps induced by spin polarization in ZGNRs are
known to close by doping.51 Here, we consider to what extent
a similar effect is found for the antiferromagnetic ordering of
GALs. We investigate the effects of both thermal excitations
and carriers injected by dopants or charge reservoirs such
as a metallic substrate. Thermal excitations are included
by applying finite-temperature Fermi-Dirac statistics when
calculating the electron density. Thus, the bottom conduction
bands displaying a spin polarization opposite that of the top
valence bands contribute to the charge density, causing an
overall reduction in spin polarization. This, in turn, causes a
reduction of the band gap which allows the thermal excitation
of further conduction-band electrons reducing the band gap
even more. The results are shown in Fig. 7 for structures
of the type presented in Fig. 1, where it is clearly observed
how all GALs depolarize near 1000 K, regardless of band
gap. We note that other thermal mechanisms exist which may
disrupt the magnetic order in GALs well below 1000 K, e.g.,
lattice distortions or quantum fluctuation effects. Also, from
statistical mechanics the Mermin-Wagner theorem states that
phase transitions breaking extended symmetries cannot occur
at any finite temperature in one- and two-dimensional systems
with sufficiently short-ranged interactions.52,53 In fact, this
excludes the possibility of spontaneous formation of both fer-
romagnetic and anti-ferromagnetic phases in systems governed
by a purely local Hubbard model.54 Ab initio calculations
suggest, however, that upon including long-range Coulomb
interaction (as in, e.g., DFT models) ordered magnetic phases
are indeed realistic well above room temperature in related
systems such as graphene nanoribbons55 or point defects.56,57

Here, however, we have analyzed the important case of thermal
carrier injection on antiferromagnetically prepared ground
states by equilibrium statistics using the Hubbard model as
a rough guide, and find this not to close the induced band
gaps at room temperature. On a final note, we emphasize
that models treating Coulomb interaction accurately may be
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FIG. 7. (Color online) Band gap and maximum spin polarization
of several triangular GALs at varying temperatures calculated using
the HTB model. All species tend to depolarize at temperatures larger
than approximately 1000 K, regardless of band gap.

necessary to capture the correct temperature dependence of
spin polarization in GALs.

Charge carriers injected (at zero temperature) by, e.g.,
chemical doping can be treated by adjusting the Fermi level
into the conduction-band range at an energy yielding an
electron number satisfying the chosen doping level, and the
results are displayed in Fig. 8. A clear spin depolarization
(and hence decreasing band gap) is observed with increasing
number of injected electrons. However, for all ribbons a
complete depolarization is observed only at relatively high
doping levels, close to 1% increase in electrons per unit cell
relative to the intrinsic case. Additionally, all GALs appear
increasingly sensitive towards doping with increasing W for
constant S. This trend can be understood by noting that the
number of edge states is proportional to the edge length
S, while the number of doping electrons scales with the
number of atoms per unit cell (the doping levels are given
in percentages of electrons per unit cell) and hence W . Thus,
with increasing W and constant S, the doping level per edge
state increases. These edge states are energetically located
near the conduction-band minimum with spin polarization
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FIG. 8. (Color online) Band gap and maximum spin polarization
of triangular GALs calculated for various doping levels and structure
parameters using the HTB model.

antisymmetric to those of the top valence bands, as discussed
previously. It follows that occupation of conduction-band edge
states causes an overall spin depolarization. We note that in
order to accurately model chemical doping at the highest levels
considered here, modulations of the band structure should be
taken into account,58,59 but this complication is ignored here.

D. Linear optical response

Noting the dramatic effects of spin polarization on the
band structure near the band gap, we expect substantial
modifications of the optical properties of GALs relative to
results calculated neglecting Hubbard interaction, e.g., in
Ref. 21. We calculate the optical conductivity using the method
described in that paper both including and excluding Hubbard
interaction for triangular GALs of W = 2, and present the
results in Fig. 9. The optical spectra for small holes (S < 5)
are nearly identical regardless of the Hubbard interaction;
however, for larger structures (S > 5) dramatic modulations
in the optical spectra are found. Most notably, the band-edge
transition is blueshifted by several hundred meV due to spin
polarization, as might be expected due to the changing band
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FIG. 9. (Color online) Optical response of various triangular W =
2 GALs from the HTB model in units of the static conductivity of
graphene, σ0 = e2/(4h̄).

gap. Additionally, the peak shapes tend to differ slightly for
larger holes due to the flattening of the edge-state bands upon
inclusion of Hubbard interaction. We note that the results
presented here are calculated neglecting complications such
as excitonic effects or electron-phonon interaction. While such
phenomena are expected to affect the optical response to some
extent, the single-particle spectra remain an important first
approximation, demonstrating the impact of spin polarization
on a readily measurable quantity. An equally dramatic impact
on the transport properties of GALs with hole edge lengths
larger than 5a0 might also be expected.

IV. CONCLUSION

The ground-state electron densities of graphene antidot
structures with hexagonal holes in a triangular lattice display
antiferromagnetic spin polarization similarly to what is ob-
served for graphene zigzag nanoribbons, but only for hole
sizes with an edge length larger than five graphene lattice
constants. This has a large effect on the band structure near
the Fermi level, with a substantial band gap increase of several
hundred meV. Also, structures with a rotated hole, previously
reported to display an alternating semiconducting/metallic
behavior with increasing unit-cell size, were found to be purely
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semiconducting with the inclusion of spin polarization and
modest hole sizes. For antidots with extended zigzag edges,
this result questions the validity of simple scaling laws and
rules for band-gap opening based on calculations neglecting
spin polarization.

The states near the band gap are localized at the graphene
edges and display a strong spin polarization, with the states
just above or below the Fermi level being oppositely polarized.
Thus, with increasing temperature and doping, electrons
occupy edge bands on both sides of the band gap. This results
in a net reduction of the spin polarization and consequently
reduced band gaps. However, the spin polarization is negligible
only at temperatures larger than ∼1000 K and doping at
the percent level, enforcing that spin-polarization should be

included in any study of larger graphene antidot lattices having
zigzag edges. The increased band gap has a clear impact on
the optical properties of GALs, demonstrating the importance
of including this type of interaction when calculating physical
observables such as optical response.
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50M. Schüler, M. Rösner, T. O. Wehling, A. I. Lichtenstein, and

M. I. Katsnelson, Phys. Rev. Lett. 111, 036601 (2013).

51W. Zhu, G. Ding, and B. Dong, Appl. Phys. Lett. 100, 103101
(2012).

52N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
53A. Gelfert and W. Nolting, J. Phys.: Condens. Matter 13, R505

(2001).
54D. K. Ghosh, Phys. Rev. Lett. 27, 1584 (1971).
55H. Lee, Y.-W. Son, N. Park, S. Han, and J. Yu, Phys. Rev. B 72,

174431 (2005).
56B.-L. Huang, M.-C. Chang, and C.-Y. Mou, Phys. Rev. B 82, 155462

(2010).
57B.-L. Huang and C.-Y. Mou, Europhys. Lett. 88, 68005 (2009).
58A. Lherbier, X. Blase, Y.-M. Niquet, F. Triozon, and S. Roche,

Phys. Rev. Lett. 101, 036808 (2008).
59L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava,

Z. F. Wang, K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, Nat.
Mater. 7, 430 (2010).

195418-9

http://dx.doi.org/10.1063/1.4824025
http://dx.doi.org/10.1063/1.4824025
http://dx.doi.org/10.1063/1.3675547
http://dx.doi.org/10.1063/1.3675547
http://dx.doi.org/10.1103/PhysRevLett.62.1201
http://dx.doi.org/10.1103/PhysRevB.80.115117
http://dx.doi.org/10.1103/PhysRevB.80.115117
http://dx.doi.org/10.1007/b97943
http://dx.doi.org/10.1007/b97943
http://dx.doi.org/10.1103/PhysRevB.43.1993
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevB.81.245402
http://dx.doi.org/10.1103/PhysRevLett.111.036601
http://dx.doi.org/10.1063/1.3692171
http://dx.doi.org/10.1063/1.3692171
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1088/0953-8984/13/27/201
http://dx.doi.org/10.1088/0953-8984/13/27/201
http://dx.doi.org/10.1103/PhysRevLett.27.1584
http://dx.doi.org/10.1103/PhysRevB.72.174431
http://dx.doi.org/10.1103/PhysRevB.72.174431
http://dx.doi.org/10.1103/PhysRevB.82.155462
http://dx.doi.org/10.1103/PhysRevB.82.155462
http://dx.doi.org/10.1209/0295-5075/88/68005
http://dx.doi.org/10.1103/PhysRevLett.101.036808
http://dx.doi.org/10.1038/nmat2711
http://dx.doi.org/10.1038/nmat2711



