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RKKY interaction between adsorbed magnetic impurities in graphene: Symmetry and strain effects
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The growing interest in carbon-based spintronics has stimulated a number of recent theoretical studies on
the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in graphene, with the aim of determining the most
energetically favorable alignments between embedded magnetic moments. The RKKY interaction in undoped
graphene decays faster than expected for conventional two-dimensional materials, and recent studies suggest
that the adsorption configurations favored by many transition-metal impurities may lead to even shorter-ranged
decays and possible sign-changing oscillations. Here, we show that these features emerge in a mathematically
transparent manner when the symmetry of the configurations is included in the calculation. Furthermore, we show
that by breaking the symmetry of the graphene lattice, via uniaxial strain, the decay rate, and hence the range,
of the RKKY interaction can be significantly altered. Our results suggest that magnetic interactions between
adsorbed impurities in graphene can be manipulated by careful strain engineering of such systems.
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I. INTRODUCTION

Graphene has been attracting the interest of the wider
scientific community due to its potential for applications
in fields as diverse as photonics, sensor technology, and
spintronics.1–3 Spintronics is a particularly promising field for
graphene application due to the weak spin-orbit and hyperfine
interactions, which in other materials act as significant sources
of spin relaxation and decoherence.4–10

One recurrent topic in the field of spintronics is the
mechanism of interaction between localized magnetic mo-
ments embedded in nanoscale systems. An indirect exchange
interaction mediated by the conduction electrons of a host
medium manifests as an energy difference between different
alignments of the localized moments. Such an interaction
is usually calculated within the Ruderman-Kittel-Kasuya-
Yosida (RKKY) approximation,11–13 and the interaction itself
frequently takes this name.14

The RKKY interaction in graphene has been intensively
studied.15–30 The consensus from these studies is that the
interaction strength decays asymptotically as D−3 in undoped
graphene, where D is the separation between magnetic
moments. This decay rate is faster than the D−2 decay
expected for conventional two-dimensional materials and
arises from the vanishing density of states at the Fermi energy
in graphene.26 The usual sign-changing oscillations predicted
for such interactions are masked by the coincidence of the
Fermi surface and Brillouin zone. This causes the sign of
the coupling, which determines the ferromagnetic (FM) or
antiferromagnetic (AFM) alignment of the moments, within
the RKKY interaction to only depend on whether the two
moments occupy the same or opposite sublattices, and not on
their separation. When graphene is doped or gated such that
the Fermi surface no longer coincides with the Brillouin zone,
sign-changing oscillations are recovered and the interaction is
found to decay as D−2.

Some studies have extended the discussion to include
center-adsorbed impurities and bridge-adsorbed impurities

(Fig. 1). Center-adsorbed impurities (often called plaquette
or “hollow-site” impurities) consist of an impurity atom
located at the center of a hexagon in the graphene lattice,
connected symmetrically to the six surrounding carbon atoms.
Bridge-adsorbed impurities (often called bond impurities)
consist of an impurity atom located above the bond between
two adjacent carbon atoms in the graphene lattice, connected
symmetrically to both. These types of adsorption are of
particular interest since they are energetically favorable for
many transition-metal atoms, with the majority preferring the
center-adsorbed configuration.31–33 There is some discrepancy
in the literature about the basic features of the interaction
between center-adsorbed impurities. Some studies suggest an
interaction which is always AFM and decays as D−3 (the
same decay rate predicted for substitutional), while others
suggest a decay rate of D−7 with a FM interaction at some
separations.18,23,24 This discrepancy is similar to the related
case of carbon nanotubes, where center-adsorbed impurities
are predicted to display a decay rate of D−5 instead of D−1

found for substitutional impurities.34–36

Recent interest in the strain engineering of graphene is mo-
tivated by the high degree of tunability that can be achieved by
varying the strength and type of mechanical strain applied.37–40

The ability of graphene to sustain reversible deformations of up
to approximately 20% (Ref. 41) suggests that even simple uni-
axial strains may provide opportunities to tune the electronic,
magnetic, optical, and thermal properties of graphene systems.
Strain has recently been predicted to significantly modify
features of the interaction between substitutional magnetic
moments embedded in graphene.42,43 Due to the number of
transition-metal atoms that adsorb in either the center or bridge
configurations, and the different features observed for these
configurations, it is worth expanding this previous work to pre-
dict the effects of strain on the interactions between adsorbed
impurities. Since a range of effects are predicated on exchange
interactions, the ability to manipulate these interactions via
strain may lead to interesting spintronic applications.
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FIG. 1. (Color online) Schematic representation of the graphene
lattice showing with the armchair (A) and zigzag (Z) directions and
units of separation (lA and lZ), the two-atom unit cell (shaded area)
and lattice vectors a1 and a2, and the bond lengths R1, R2, and R3

between an atom on the lattice and its nearest neighbors. The filled and
hollow symbols represent sites on different sublattices. The bottom
panels show magnetic impurities (X) attached to graphene lattice
atoms xi in the center-adsorbed (left) and bridge-adsorbed (right)
configurations.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the theoretical prescription to describe
the graphene-impurity system, calculate the RKKY interaction
in terms of single-particle Green’s functions (GFs), and
provide an analytical approach to extract the decay behavior
using the stationary phase approximation (SPA) and RKKY
approximation. In Sec. III, we compare numerical calculations
and analytical predictions of the energy difference between
FM and AFM alignments of the moments. In Sec. IV, we
explore how breaking the symmetry of the system via uniaxial
strain leads to longer-ranged interactions for center-adsorbed
impurities, and strain-controlled sign changes in the coupling
of bridge-adsorbed impurities. Finally, in Sec. V, we discuss
our results and their implications.

II. METHODS

The indirect exchange coupling between two moments
embedded in a conducting host can be calculated by con-
sidering the energy difference between the ferromagnetic
and antiferromagnetic alignments of the moments.15,44 The
total energy difference JBA between two magnetic impurities
labeled A and B can be calculated using the Lloyd formula

method

JBA = − 1

π
Im

∫
dE f (E) ln

(
1 + 4 V 2

ex G
↑
BA(E)G↓

AB(E)
)
,

(1)
where Gσ

AB(E) is the real-space, single-electron Green’s
function describing the propagation of electrons with spin
σ =↑ or ↓, Vex is the exchange splitting of the magnetic
impurity, and f (E) is the Fermi function.

To calculate the required GFs we employ an Anderson-
type Hamiltonian45 to describe the electronic properties of the
system, whose general form is given by

Ĥ =
∑

〈j,�〉,σ
tj,� ĉ

†
jσ ĉ�σ

+
∑
X,σ

(
εσ
X ĉ

†
Xσ ĉXσ +

xN∑
x=x1

(τX,x ĉ
†
Xσ ĉxσ + c.c.)

)
. (2)

Here, ĉ
†
jσ (ĉjσ ) creates (annihilates) an electron with spin σ

in a π orbital centered at site j in the graphene lattice, tj,� is
the electronic hopping term between two such orbitals, where
tj,� = 0 if sites j and l are not nearest neighbors. The first term
in Eq. (2) is thus simply the nearest-neighbor tight-binding
(NNTB) Hamiltonian for the pristine graphene lattice, with
nearest-neighbor hopping t = −2.7 eV. The second term
provides a simple description of the magnetic impurity orbitals
(X = A,B) and their connection to the lattice. We assume that
each impurity orbital has a finite hopping τX,x to N of the
carbon π orbitals located at sites x = {x1, . . . ,xN } surrounding
the impurity. The specific cases we consider in this paper are
N = 6 (center adsorbed) and N = 2 (bridge adsorbed), as
shown in the bottom panel of Fig. 1. The quantity εσ

X = ∓Vex

is a spin-dependent onsite potential that accounts for the
exchange splitting in the magnetic orbitals. In this model,
we consider only a single magnetic orbital at each impurity
site. However, it is straightforward to generalize the approach
to deal with multiple orbitals. The exact parametrizations for
specific impurity types can be found by comparison to ab
initio studies of single impurities adsorbed onto a graphene
sheet, which have been performed for a wide range of impurity
species with different adsorption configurations.31–33,46–52

A. Green’s functions

The Green’s function matrix elements Gσ
AB(E) required

for the calculation in Eq. (1) are obtained using the Dyson
equation. This allows the complete Green’s function to be
written in terms of the pristine lattice GFs of the graphene
lattice (gab) associated with the first term of the Hamiltonian
in Eq. (2). We find

GAB = gAA �AB gBB

(1 − gAA�AA)(1 − gBB�BB) − gAA�ABgBB�BA

,

(3)

where gAA is the GF for the disconnected impurity and we
define �AB to be the sum of the N2 pristine graphene GF
matrix elements connecting the two impurity sites

�AB =
aN∑

a=a1

bN∑
b=b1

τAa gab τbB ≡ τ 2
∑
a,b

gab. (4)
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In the last term of Eq. (4), we assume that the hopping terms
from each of the connecting sites to the impurity orbital are
identical. The onsite potentials required for the spin-dependent
GFs can be added similarly using the Dyson equation.

We note that the only term in Eq. (3) that depends on the
separation between A and B is �AB . Since the second term
in the denominator of Eq. (3) decays rapidly for appreciable
separations, it is clear that GAB(D) ∼ �AB(D). Thus, we
expect �AB to dominate in our investigation of the coupling and
we now examine the form of this quantity. The pristine GFs,
gab, appearing in Eq. (4) can be calculated using the Bloch
theorem to avail of the periodicity of the pristine graphene
lattice. The GF connecting two sites on the graphene lattice in
unit cells separated by a vector D can be written as a double
integral over the Brillouin zone in reciprocal space:

gab = 1

2π2

∫ π/2

−π/2
dkZ

∫ π

−π

dkA

Nab(E,k) eik·D

E2 − t2 |f (k)|2 , (5)

where kA =
√

3kxa

2 and kZ = kya

2 are dimensionless wave
vectors in the armchair and zigzag directions, respectively,
and

f (k) = 1 + 2 cos(kZ)eikA (6)

is related to the electronic dispersion relation of the NNTB
Hamiltonian by ε± = ±t |f (k)|. Nab(E,k) is a complex func-
tion whose exact form depends on whether the sites a and
b belong to the same or opposite sublattices (represented
schematically by filled and hollow circles in Fig. 1) and is
given by

Nab(E,k) =
⎧⎨
⎩

E for {a,b} ∈ {•,•} ∨ {◦,◦},
tf (k) for {a,b} ∈ {•,◦},
tf �(k) for {a,b} ∈ {◦,•}.

(7)

The numerical cost of evaluating graphene GFs using Eq. (5)
can be reduced considerably by noting that either of the two
integrals can first be performed analytically using contour
integration.26

From Eq. (4) it is clear that �AB can be written as a
sum of N2 integrals. However, for numerical and analytical
convenience it is useful to take the summation inside the
integrals before they are solved. We can then write

�AB = 1

2π2

∫ π/2

−π/2
dkZ

∫ π

−π

dkA

M(E,k) eik·D

E2 − t2|f (k)|2 , (8)

where D here is the separation vector between the impurities
A and B or, indeed, between any two equivalent sites ai and
bi around each impurity site. M(E,k) takes into account the
net effect of the various Nab and additional phase terms that
arise during the summation over a and b and is given by

M(E,k) =
aN∑

a=a1

bN∑
b=b1

Nab(E,k) ei k· (Dba−D), (9)

where Dba is the separation vector between the unit cell
containing the site a connecting to impurity A and that
containing site b connecting to B. The form of M(E,k)
thus depends on the nature of the impurity and its connection
to the graphene lattice. Explicit expressions for the center-
and bridge-adsorbed cases will be given in Sec. III. We note

that Eq. (5) for gab and Eq. (8) for �AB are very similar in
form, with M(E,k) taking the place of Nab in the latter.
It is thus instructive to examine whether methods that have
proven useful for the single-site GFs can also be availed of
when the multisite �AB term is of interest. First, we note that
once more contour integration can be used to perform one
of the two integrals in Eq. (8). Numerical tests confirm that
identical results are obtained whether �AB is evaluated using
the single or double numerical integration methods or using a
summation of the single-site GFs given in Eq. (4). The methods
we have introduced thus far have reduced the calculation
of �AB for center-adsorbed impurities from a sum of 36
two-dimensional integrals to just a single one-dimensional
integral, allowing much faster numerical evaluation of �AB

and quantities, such as the magnetic coupling, which rely upon
it. We have shown previously that the pristine graphene GFs
between sites separated along the high-symmetry directions
are very well approximated throughout the entire energy
band using the stationary phase approximation (SPA).42 This
method takes advantage of the highly oscillatory nature of
the integrand and approximates the integral near stationary
points k0, where the oscillations are slowest. It returns a
closed-form analytic expression for the GF, which we have
previously applied to studies of both the standard RKKY
interaction26 and dynamic spin excitations of substitutional
magnetic impurities in graphene.53 Using the SPA approach,
the off-diagonal element of the graphene lattice GF between
two sites on the same sublattice can be written as a sum of
terms of the form

gab(E) = A(E)eiQ(E)D

√
D

, (10)

where A(E) is an energy-dependent coefficient and Q(E) can
be identified with the Fermi wave vector in the direction of
separation. The exact functional forms of these quantities de-
pend on the separation direction, but the distance dependence
is clear in this form. An analogous expression can be derived
for �AB . Since the oscillatory terms in the integrands for gab

and �AB are identical, the stationary points occur at exactly
the same values. Thus, the only alteration made to Eq. (10) is
to the coefficient A(E), which is multiplied by a factor M0(E)

E
,

where M0 is found by evaluating Eq. (9) at the stationary
point. Explicit expressions for the stationary points and for
the coefficients A(E) and Q(E) are calculated in Ref. 26 for
the high-symmetry armchair and zigzag directions, and will
be used in later sections to calculate the analytic form of �AB

for center-adsorbed and bridge-adsorbed impurities with these
separation directions.

B. RKKY interaction

Numerical calculations of the indirect exchange coupling
within this work are performed by evaluating the integral
in Eq. (1) with the full Green’s functions calculated using
Eqs. (3)–(9). To explore the behavior of the interaction
analytically, it is worth noting that for small exchange splittings
Vex , the logarithm in Eq. (1) can be approximated by the
leading term in a Taylor expansion so that the coupling
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becomes

JBA ≈ −4 V 2
ex

π
Im

∫
dEf (E)G2

AB(E). (11)

This expression is equivalent to the commonly used RKKY
approximation, where we note that the spin-dependent GFs
are replaced by their spin-independent counterparts. For
substitutional impurities, the pristine graphene lattice GFs
are used and the expression is rewritten in terms of the spin
susceptibility χ . For adsorbed atoms, we have seen that the
separation-dependent behavior of the full GF is determined by
that of �AB and so we make the additional approximation

JBA ∼ −V 2
ex Im

∫
dEf (E) �2

AB(E), (12)

which encapsulates all the relevant separation-dependent be-
havior of the interaction between adsorbed impurities. Within
the SPA approach, we have seen above that �AB can be written
in a form analogous to Eq. (10):

�AB(E) = A�(E)eiQ(E)D

√
D

, (13)

where A�(E) is related to A(E) in Eq. (10).
We have also shown previously that the behavior of the

magnetic coupling can be extracted quite easily when the GFs
are expressed in such a form. The integration procedure can be
reduced to a sum over Matsubara frequencies, and when the
functions B(E) = A2

�(E) and Q(E) are expanded around the
Fermi energy in the low-temperature limit we find

JBA ∼ Im
∑
�=0

J�(EF )

D�+2
ei2Q(EF )D, (14)

where

J�(EF ) = V 2
exB(�)(EF )

[2iQ(1)(EF )]�+1
(15)

is the distance-independent coefficient for the �th term in the
series, � is a non-negative integer, and B(�) is the �th-order
energy derivative ofB(E) evaluated at EF . From this definition
it should be clear that the leading term in this series (the
first nonzero B(�)) determines the asymptotic decay rate of the
coupling, which goes as 1/D�+2. For substitutional impurities
in graphene, it is found that the � = 0 term vanishes, leading
to a decay rate of J ∼ D−3, faster than expected for a two-
dimensional material.

In the following sections, we will show the explicit form of
the expressions derived above for the specific cases of center-
adsorbed and bridge-adsorbed impurities. We examine some
of the features of �AB in each case and show how they lead
to interesting results for the interactions between magnetic
impurities which adsorb in these configurations.

III. IMPURITY CONFIGURATIONS

A. Center-adsorbed impurities

Center-adsorbed impurities are of particular interest in the
study of magnetically doped graphene since this configura-
tion is the most energetically favorable for the majority of
single-atom impurities, including many transition-metal atoms
such as Fe, Mn, and Co.31,32,47–49,51,52 Each center-adsorbed

impurity is connected to the six surrounding atoms in the
lattice, as shown in the bottom left panel of Fig. 1, so that the
sum in Eq. (9) consists of 36 terms. The symmetry of many of
these terms allows much simplification and we can write

MC(E,k) = 2E|f (k)|2 + 2t Re[f 3(k) e−i2kA ]. (16)

Using this expression in conjunction with Eq. (8) pro-
vides an efficient method to calculate �AB numerically for
center-adsorbed impurities, especially when contour integra-
tion is used to reduce the numerical evaluation to a one-
dimensional integral in reciprocal space. When using the
contour-integration approach, the correct sign of the pole must
be taken in each term of M(E,k) and it is usually necessary
to split up some of the trigonometrical expressions into their
exponential components to achieve an exact match with the
sum of individual GFs. To gain an insight into the analytic
behavior of �AB for large separations, we can loosen these
constraints and evaluate the MC(E,k) term within the SPA
approximation in the high-symmetry armchair and zigzag
directions. For armchair separations, a single stationary point
is sufficient for a very accurate approximation in the energy
range |E| < |t |. At this stationary point, we find

Mac
C (E,k0) = 2E3(t − E)

t3
. (17)

Generalizing the single-site SPA GF derived in Ref. 26, we
find the following coefficients for Eq. (13):

Aac
C (E) = τ 2

√
2i

π

√
E

(E2 + 3t2)
√

(t2 − E2)

2E2(t − E)

t3
,

Qac(E) = ±cos−1

(−√
t2 − E2

t

)
, (18)

where we note that the value of Q is identical to the single-
impurity case so we omit the C subscript. The choice of sign
for Qac emerges from the requirement that the poles involved
in the contour integration lie within the chosen contour, and
for positive separations in the armchair direction it is the sign
that obeys the constraint Im [Qac(E)] > 0. Equations (13) and
(18) provide a closed-form analytical expression for �AB for
armchair-separated center-adsorbed impurities. The left-hand-
side panels of Fig. 2 show a comparison of this quantity with
a complete numerical evaluation for a separation of 30lA and
we note an excellent agreement, confirming the validity of the
SPA approach.

A similar approach can be followed for zigzag separations,
again following the prescription given in Ref 26. We note that,
for this direction, there are generally two contributing terms
of the type shown in Eq. (10) which must be considered when
deriving the SPA GF. Each has a corresponding evaluation for
Mzz

C (E,k0). However, one of these evaluations is identically
zero, such that only one of the contributions needs to be
considered. The surviving value is

Mzz
C (E,k0) = 4E3

t2
, (19)
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FIG. 2. (Color online) Numerical (symbols) and analytical
(dashed lines) evaluations of the real (top panels) and imaginary
(bottom panels) components of �AB for two center-adsorbed type
impurities with separations of 30lA in the left panels and 60lZ in the
right panels.

and the corresponding SPA coefficients are

Azz
C (E) = τ 2

√
2iπ

4E2

t2

√
E

|t |(t − E)
√

[4t2 − (E − t)2]
,

Qzz
C (E) = ±cos−1

(−t + E

2t

)
, (20)

where Qzz
C (E) is the same as for one of the single-impurity

zigzag-direction cases and again has a sign choice emerging
from the contour integration.

From the SPA coefficients we can predict the decay rates for
the RKKY interaction between two center-adsorbed magnetic
impurities. To determine the decay rate, we must determine the
first nonvanishing energy derivative B(�) of B = A2 evaluated
at the Fermi energy EF = 0.0. Using the expressions for
A in Eqs. (18) and (20), this is found to occur at � = 5,
corresponding to a decay rate of J ∼ D−7, for both armchair
and zigzag separations of center-adsorbed impurities. This
is significantly faster than the J ∼ D−3 rate predicted for
substitutional impurities in graphene, or the more general J ∼
D−2 rate predicted for two-dimensional materials. This point
will be discussed in further detail in Sec. IV A, when strain
is introduced. Comparing these predictions with numerical
calculations of the complete exchange interaction reveals a
more complicated picture (Fig. 3). The first point to note is
that a much faster decay rate than the substitutional case is
noted for all directions, and in the zigzag direction a decay
of D−7 is noted in agreement with the analytic prediction.
However in the armchair direction, an even faster decay
of approximately D−10 is noted initially leading to a sign
change, with a decay of D−7 recovered in the asymptotic
limit. Thus, our analytic result captures the large separation
limit in each direction. An interesting point to note is also
that the sign of the interaction is not AFM at all sites, as
has been previously predicted for this type of impurity.18,22,23

In the zigzag direction, we note that every third value of
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7
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0
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 | 
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B

 |

~ D
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~ D
-7

~ D
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D (a) D (a)

armchair direction zigzag direction

FIG. 3. (Color online) Numerical evaluation of the coupling
between center-adsorbed impurities as a function of separation D

in the armchair (left) and zigzag (right) directions. The armchair
(zigzag) results are multiplied by D7 (D6) to highlight the features
discussed in the text. The red dashed line in the main panels highlights
the boundary between AFM (above) and FM (below) couplings. In
the armchair direction, an initial AFM interaction decays extremely
rapidly as D−10 before a sign change to FM and a decay of D−7 at
larger separations. Zigzag separations reveal that every third value
of separation has an FM interaction approximately two orders of
magnitude smaller than the AFM majority values. The insets in
each case show log-log plots where dashed lines show the slopes
corresponding to the relevant decay rates.

separation corresponds to a preferential FM coupling, but
that this coupling is approximately two orders of magnitude
smaller than the AFM values at similar distances. The period-3
behavior for zigzag-direction separations is a common feature
in graphene and arises due to the form of the component
of the Fermi wave vector in this direction. In the armchair
direction, this period-3 behavior does not arise and a smoother
curve is found. The interaction is initially antiferromagnetic
where it decays even more rapidly than predicted, before a sign
change gives a very weak ferromagnetic interaction with a D−7

decay rate in the asymptotic limit. For directions between the
high-symmetry armchair and zigzag directions, a combination
of these features is reported as each separation consists of
an armchair and zigzag component. Due to the extremely
rapid rates of decay, the interaction between center-adsorbed
magnetic impurities is essentially zero for any reasonable
separation above a few lattice spacings. A similar increase in
the decay rate has been noted previously for center-adsorbed
impurities in carbon nanotubes, but the decay rate here is
even more rapid.35 This result would appear to have serious
negative implications for spintronic devices aiming to exploit
RKKY-type interactions between transition-metal adsorbates
in graphene. We note that although our model assumes equal
hopping parameters between the magnetic impurity and the
six surrounding carbon atoms, it can be easily shown that the
fast decay rate will result as long as the hopping terms to sites
on the same sublattices are equivalent. A similar conclusion is
reported in Ref. 24.

B. Bridge-adsorbed impurities

We move our attention now to the case of bridge-adsorbed
impurities shown schematically in the bottom right panel
of Fig. 1, where the magnetic atom is connected to two
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neighboring carbon atoms on the graphene lattice, one from
each of the sublattices. A number of transition-metal atoms
are known to favor this configuration over the more common
center-adsorbed position.32,33,46,50 We can divide pairs of
bridge impurities into three classes, depending on the relative
orientations of the carbon-carbon bonds over which they are
positioned. Without loss of generality, we assume that one
of the impurities is connected over the bond connecting two
carbon sites in the same unit cell (R2 in Fig. 1). The class
to which a pair of impurities belong then depends on which
of the three possible bond orientations, denoted by R1, R2,
and R3 in Fig. 1, the second impurity is positioned over.
For the current discussion, we will focus on the case when
the second impurity also connects to two atoms in the same
unit cell, i.e., is also positioned over the R2 bond. However,
the behavior of the other two classes is qualitatively similar.
The Green’s function connecting two such bridge-adsorbed
impurities can be calculated analogously to that for center-
adsorbed impurities using Eqs. (3), (8), and (9), where taking
the summations in Eq. (9) over the two atoms at each site we
find

MB(E,k) = 2E + 2t Re [f (k)] . (21)

We can use this expression, as in the center-adsorbed case, to
either make a full numerical evaluation of the Green’s function
more efficient or within the SPA to get an approximate form of
the Green’s function at large separations. Within the SPA, we
find expressions for �AB of the form given by Eq. (13), where
the coefficients for armchair and zigzag separations are given
by

Aac
B (E) = τ 2

√
2i

π

√
E

(E2 + 3t2)
√

(t2 − E2)

2(E + t)

t
,

Qac(E) = ±cos−1

(−√
t2 − E2

t

)
,

(22)

Azz
B (E) = 4τ 2

√
2iπ

√
E

|t |(t − E)
√

[4t2 − (E − t)2]
,

Qzz
B (E) = ±cos−1

(−t + E

2t

)
,

where the sign choices once more relate to the contour
integration. These expressions are in excellent agreement
with numerical evaluations of �AB for large separations
between the bridge-adsorbed impurities, as shown in the top
panels of Fig. 4 for both high-symmetry directions. The SPA
coefficients also allow us, as before, to predict the decay rate
of the RKKY interaction between bridge-adsorbed impurities.
For both directions, the first derivative of B is nonzero,
corresponding to a decay rate of JAB ∼ D−3, the same rate
as predicted for substitutional and top-adsorbed impurities.
The fully numerical calculations shown in the bottom panels
of Fig. 4 confirm this decay rate but also illustrate additional
features. The armchair case is very similar to the substitutional
behavior, displaying a monotonic D−3 decay. However, it is
interesting to note that the interaction in this case is FM.
The other two classes of bridge impurity in this direction
(not shown here) have monotonic AFM interactions. This is
consistent with the interesting behavior in the zigzag direction,
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B
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)
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-0.4 -0.2 0 0.2 0.4

zigzag direction
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B
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0

5e-06
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t’ / t

-π/6

0

π/6

φ Β

~ D-3

~ D-3

FIG. 4. (Color online) �AB (top) and coupling (bottom) for
bridge-adsorbed impurities separated in the armchair (left) and zigzag
(right) directions. An excellent match is noted between numerical
(symbols) and analytic (lines) results for �AB for separation of 35lA
and a separation of 60lZ for both real (black) and imaginary (red)
components. A monotonically decaying D−3 FM interaction is seen in
the armchair direction for the class of bridge adsorbates investigated,
whereas a sign-changing oscillation is observed in the zigzag case.
The phase of the oscillations is found to vary with the hopping
parameter between the impurities and the carbon atoms, as shown
in the inset.

where the usual period-3 oscillation in this direction now
displays a sign-changing behavior, with one third of the
separations corresponding to preferential FM alignments. Of
the other two classes of pairs of bridge-adsorbed impurities,
one displays similar behavior to that shown here, whereas
the remaining class shows two-thirds of separations preferring
FM alignments. Thus, one-third of the total possible bridge-
adsorbed impurity pairs display FM alignments. In contrast to
the center-adsorbed case, the FM interactions have the same
order of magnitude as the AFM interactions, and the coupling
for each class can be written as

JAB ∼ 1 − 2 cos(2QD + φB)

D3
, (23)

where φB is a phase factor. This is in contrast to the
substitutional case where a non-sign-changing oscillation
1 + 2 cos(2QD) is found. The oscillatory form of the bridge-
adsorbed impurity coupling in Eq. (23) has been calculated
within the RKKY approximation previously in Ref. 23. Here,
it is associated with a direction-dependent phase factor that
arises between the interactions when the moments are on
the same or on opposite sublattices. An interesting feature
is that the phase of the oscillation between bridge-adsorbed
impurities φB depends on the hopping parameter τ connecting
the impurity to the two neighboring carbon atoms. The form
of this dependence is shown in the inset of Fig. 4. This means
that different impurity species will have different oscillation
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phases and may make feature detection difficult when only a
small number of separation values are available, for example,
in density functional theory (DFT) calculations.

IV. UNIAXIALLY STRAINED GRAPHENE

In a recent work,42 we explored the possibility of ma-
nipulating the indirect exchange interaction between two
substitutional impurities in graphene by applying a uniaxial
strain. We found that the indirect exchange interaction between
substitutional atoms separated in the armchair direction can be
monotonically amplified or suppressed with uniaxial strain,
while those separated in the zigzag direction displayed a more
complicated, nonmonotonic behavior, indicating the ability to
switch off interactions between certain sublattices with strain.
Since the features of the unstrained interaction between ad-
sorbed impurities show many differences to the substitutional
case, it is worth extending our study of strained graphene to
include the bridge- and center-adsorbed configurations.

For uniaxial strain in the high-symmetry armchair (A) and
zigzag (Z) directions, the atomic bond lengths (R1/2/3) shown
in Fig. 1 vary with the tensile strain (ε) applied:

A :
R1

R0
= R3

R0
= 1 + 1

4
ε − 3

4
εσ,

R2

R0
= 1 + ε,

Z :
R1

R0
= R3

R0
= 1 + 3

4
ε − 1

4
εσ,

R2

R0
= 1 − εσ,

(24)

where R0 = 1.42 Å is the unstrained bond length in graphene
and σ = 0.165 is the graphite value for Poisson’s ratio, giving
the level of contraction perpendicular to the direction of
applied strain. We note that we can write R3 = R1 due to the
symmetry of the two strain directions considered. The hopping
parameters vary with bond length as

ti(�R) = t0e
−α

�Ri
R0 , (25)

where �R is the change in the bond length, and α = 3.37 is
a constant.38,54 For the types of strain considered, we must
therefore rewrite the Hamiltonian in Eq. (2) and the Green’s
function in Eq. (5) for the pristine graphene sheet, replacing
the uniform hopping parameter t with new parameters t1 if
the bond is of type R1 or R3 and t2 if it is of type R2. This
is achieved in the Green’s function calculation by making the
substitution

tf (k) → h(t1,t2,k) = t2 + 2t1 cos kZ ei kA (26)

in Eq. (5) and propagating it throughout the following deriva-
tions. The analytic form of the new Green’s function within the
SPA was calculated in Ref. 42 and used to determine the RKKY
interaction between two substitutional impurities in strained
graphene. It is reasonably straightforward to generalize the
�AB expressions for center- and bridge-adsorbed impurities in
a similar manner to account for the strained graphene host.
It should be noted that the applied strain will also effect the
bonding between the impurity species and the graphene and
may alter the magnitude of the impurity moment.55–58 Such
effects are dependent on the exact impurity species considered
and are beyond the scope of this work, but can be expected to
further influence the strain-dependent behavior of the RKKY
interaction.

In the next sections, we will show the explicit strain-
dependent forms ofM(E,k,ε) for center- and bridge-adsorbed
impurities which form the basis of numerical calculation of
�AB . The strain dependence of the resultant SPA coefficients
is also shown and used to explain the strain-dependent features
of the indirect exchange interaction between these types of
adsorbates.

A. Strain effects on center-adsorbed impurities

The strain-dependent M(E,k,ε) term for center-adsorbed
impurities is found by using Eqs. (16) and (26). It is given by

MC(E,k,ε) = 2E|f (k)|2 + 2 Re[f 2(k) h(t1,t2,k) e−i2kA ].
(27)

Care must once more be taken that the correct sign choice
for the relevant pole is made for each term in MC(E,k)
when using Eq. (27) within an exact contour integral. Using
numerically evaluated Green’s functions, we can calculate the
indirect exchange interaction for center-adsorbed impurities
as a function of strain. The top panels of Fig. 5 show how the
coupling between center-adsorbed impurities a fixed distance
apart varies as uniaxial strain is applied perpendicular to
the separation direction. The results are normalized relative
to the magnitude of the coupling in the unstrained system.
We show two cases: armchair-separated impurities with a
zigzag strain [Fig. 5(a)] and zigzag-separated impurities with
an armchair strain [Fig. 5(b)]. In both cases a dramatic
increase in the magnitude of the coupling is observed as the
strain is increased. It is worth noting that similar increases
in the coupling magnitude, not shown here, are observed if
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FIG. 5. (Color online) Numerically evaluated indirect exchange
interaction J (ε) between two center-adsorbed impurities fixed dis-
tances apart in the (a) armchair and (b) zigzag directions as uniaxial
strain is applied perpendicular to the separation direction. The results
are normalized relative to the unstrained coupling J (0). The inset
in panel (a) shows a closeup of the region highlighted by a dotted
rectangle in the main plot. (c) Log-log plots of coupling against zigzag
direction separation for armchair direction strains of ε = 0.0 (black,
solid line), 0.05 (red, dashed line), and 0.1 (green, dashed-dotted line).
The black dotted lines show linear regressions with slopes of −6.8,
−3.5, and −3.4, respectively. (d) Decay exponent α as a function of
strain for the cases shown in (c) and additional values.
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parallel strains are applied. This is in contrast to the case of
substitutional impurities,42 where parallel strains are generally
associated with an overall suppression of the coupling. For
the zigzag-separated impurities in Fig. 5(b), we also note
sizable sign-changing oscillations, suggesting strain as a tool to
manipulate the preferential spin alignment of a pair of center-
adsorbed impurities. A more subtle sign-changing feature is
also present for the armchair direction and highlighted in the
zoomed inset of Fig. 5(a), where we note the unstrained FM
coupling switches to AFM initially, before returning to FM
for larger values of strain. To understand this behavior better,
we turn to the distance dependence of the coupling in strained
systems. Figure 5(c) shows log-log plots of the coupling as
a function of distance for zigzag-separated center-adsorbed
impurities with no strain (black, solid line) and for armchair
strains of ε = 0.05 (red, dashed line) and ε = 0.1 (green,
dashed-dotted line). It is clear that the slopes of the three
lines are different, indicating a change in the rate of decay
as strain is varied. Regression fits to these curves (dotted
black lines) find decay exponents of −6.8, −3.5, and −3.4 for
the ε = 0.0,0.05,0.1 cases, respectively. Figure 5(d) plots the
decay exponent α (where J ∼ D−α) for a number of ε values.
We see that the initial unstrained asymptotic decay rate of D−7

changes to the D−3 rate expected for substitutional and bridge
impurities [shown by a dashed red line in Fig. 5(d)] within
the range ε = 0.0–0.05, and it remains constant at this value
for higher values of strain. Similar transitions of the decay
rate from D−7 to D−3 are noted for the other separation and
strain directions, and explain the massive amplification of the
coupling with strain noted in the top panels of Fig. 5.

To understand the behavior of the coupling more clearly,
it is worth examining the strain-dependent forms of the SPA
gamma function, and the role they play in determining the
sign and decay rate of the coupling. The strain-dependent SPA
coefficients for armchair and zigzag separations are given by

Aac
C (E,ε) = τ 2

√
2i

π

√√√√ E(
E2 − t2

2 + 4t2
1

)√(
t2
2 − E2

)
× 2(E + t2 − t1)2(t2 − E)

t2t
2
1

, (28)

Qac(E,ε) = ±cos−1

(−
√

t2
2 − E2

t2

)
,

Azz
C (E,ε) = τ 2

√
2iπ

√√√√ E

|t2|(t2 − E)
√[

4t2
1 − (E − t2)2

]
× 2(E − t2 + t1)2

t2
1

, (29)

Qzz
C (E,ε) = ±cos−1

(−t2 + E

2t1

)
.

It is clear that these expressions reduce to those given by
Eqs. (18) and (20) in the ε = 0 limit where t1 = t2. From
the discussion in Sec. III A of the interaction decay rate for
center-adsorbed impurities in unstrained graphene, we recall
that the decay exponent α is determined by the order of the

first nonvanishing energy derivative of B = A2 evaluated at
the Fermi energy. From Eq. (12), if B(�) �= 0, then α = � + 2.
In the unstrained case, the first four derivatives of B vanish,
corresponding to a decay exponent of α = 5 + 2 = 7. The
zeroth derivative B(0) = B vanishes in both the strained and
unstrained cases due to the presence of the E in the numerator
of A in Eqs. (18), (20), (28), and (29). This is related to the
vanishing density of states in graphene at the Dirac point and
also occurs for substitutional and bridge-adsorbed impurities,
where an α = 3 decay is predicted for unstrained graphene.
Examining the form of B(�)(ε) for center-adsorbed impurities,
we note that

B(�)(E = 0) ∼ (t2 − t1)5−� for � = 1, . . . ,5 (30)

so that the first four terms vanish in the unstrained case. As
a nonisotropic strain is applied, the quantity t2 − t1 becomes
nonzero and we thus expect a decay rate of D−3, corresponding
to the � = 1 term in the series dominating, and indeed this is
what we find numerically in the asymptotic case for larger
values of strain. However, for small values of strain and small
to medium separations between the impurities, the dominating
term is determined by an interplay between the (t2 − t1)5−�

term in the numerator and D�+2 term in the denominator.
Another complicating factor is the fact that the different terms
in the power-series expression for the coupling may have
different signs. Thus, as strain is increased, we should expect
to see the decay rate decrease from D−7 to slower decays of
alternating sign before settling on D−3 when theJ3 coefficient,
from Eq. (15), is large enough to dominate over those of faster
decays. This is exactly the behavior noted in the numerical
results presented in the bottom panels of Fig. 5.

We note that in addition to the sign-changing oscillations for
both armchair and zigzag directions which are associated with
different terms in the coupling power series dominating the
interaction, another set of sign-changing oscillations emerge
for zigzag separations due to the strain dependence of the
Fermi surface which breaks the commensurability between
the oscillation period and the lattice spacing. A similar set of
oscillations, but without the sign-changing feature seen here,
was noted for substitutional impurities in strained graphene.42

B. Strain effects on bridge-adsorbed impurities

The strain-dependent form of M(E,k,ε) for bridge-
adsorbed impurities is found by using Eq. (26) to generalize
Eq. (21), which yields

MB(E,k,ε) = 2E + 2 Re[h(t1,t2,k)] (31)

when both impurities are over an R2 bond shown in Fig. 1, and
similar expressions for the other classes of bridge-impurity
pairs discussed in Sec. III B. The indirect exchange interaction
between two such impurities in a strained graphene system
can be calculated numerically as before, and a number
of representative calculations of the coupling are presented
in Fig. 6. Unless otherwise stated, the bridge impurities
considered sit above the R2 bond. The top panels show
the interaction between two bridge impurities as they are
separated in the armchair (a) or zigzag (b) directions. The
black curves, representing the unstrained case, are equivalent
to the plots in the bottom panel of Fig. 4, where we note that we
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FIG. 6. (Color online) The effect of strain on the indirect
exchange interaction between bridge-adsorbed impurities separated
in the armchair (left panels) and zigzag (right panels) direction. In all
panels, red (green) plots correspond to an armchair (zigzag) direction
strains. (a) and (b) show the separation dependence of numerically
calculated interactions for unstrained (black, solid line) and 5%
armchair (red, dashed line) or zigzag (green, dashed-dotted line)
strains. The insets show log-log plots, confirming the persistence
of the D−3 decay rate. The bottom panels show the change in the
coupling, relative to the unstrained coupling, as a function of strain
for fixed separations of 80lA [(c) and (d)] and 80lZ [(e) and (f)]. For
armchair strains [(c) and (e)] the large red dots represent numerical
evaluations and the thin red lines the analytic predictions given in the
text. Only numerical evaluations are shown for zigzag strain cases
[(d) and (f)]. The dashed lines in (c) and (d) represent numerical
evaluations for a second class of bridge atoms (see main text).

now only consider every third separation value in the zigzag
direction in order to remove the period-3 oscillations usually
seen in this direction. The red-dashed (green dash-dotted)
curve in these panels represents the interaction when armchair
(zigzag) strain of strength ε = 0.05 is applied. In all cases,
the log-log insets in Figs. 6(a) and 6(b) reveal that, unlike for
center-adsorbed impurities, strain has no effect on the decay
rate between bond impurities, which remains at the standard
1/D3 rate for undoped graphene. For armchair separations,
we note that both strains lead to a mild suppression of the
coupling. This is in contrast to the prediction for substitutional
impurities42 that parallel (armchair) strain should suppress
and perpendicular (zigzag) strain amplify the coupling. These
features are also clear when we examine the change in the
coupling for impurities a fixed distance 80lA apart as armchair
(c) or zigzag (d) strain is applied. Numerical calculations are
shown by the red circles in Fig. 6(c), and the solid line is the
analytical result. The solid green line in Fig. 6(d) represents
the numerical calculation for zigzag strains. In both cases, only
suppression of the coupling is observed until high values of
strain are reached. The dashed lines in these panels represent
numerical calculations performed with one of the impurities
moved above an R1-type bond, i.e., one of the other classes of
bond impurity pairs discussed in Sec. III B. In this case, we
note qualitatively similar behavior for both direction strains,

with only very minor suppression of the coupling for zigzag
strains until amplification begins at high-strain values.

For zigzag separations, we note that strain induces ad-
ditional sign-changing oscillations as both the separation
[Fig. 6(b)] and strain [Figs. 6(e) and 6(f)] are varied. The
oscillations with increasing separation are in addition to the
existing period-3 oscillations visible in the bottom right panel
of Fig. 4 for the unstrained case. For a fixed separation of 80lZ ,
we note that the coupling oscillates rapidly as a function of
strain for both strain directions, with an overall amplification
for the armchair strain [Fig. 6(e)] and suppression for the
zigzag strain [Fig. 6(f)]. We note that the frequency of the
oscillations increases with separation. To better understand
the behavior for bond impurities, it is again instructive
to examine the SPA form of the �AB term entering into
the expression for the coupling. The strained forms of the
coefficients in Eq. (22) are

Aac
B (E,ε) = −2τ 2(E + t2)

t2

√
2i

π

×
√√√√ E(

E2 + 4t2
1 − t2

2

)√(
t2
2 − E2

) ,

Qac(E,ε) = ±cos−1

(−
√

t2
2 − E2

t2

)
, (32)

Azz
B (E,ε) = 4τ 2

√
2iπ

√√√√ E

|t2|(t2 − E)
√[

4t2
1 − (E − t2)2

] ,

Qzz
B (E,ε) = ±cos−1

(−t2 + E

2t1

)
.

It is clear that the oscillations arising for zigzag-direction
separations are due to the strain dependence of the Fermi
wave vector Qzz

B in this direction. This is in contrast to the
armchair case, where the wave vectorQac is strain independent
at E = 0. The anisotropy of the Fermi surface under uniaxial
strain has been noted previously in the literature38,59 and is
also the mechanism behind oscillations in the amplitude of the
coupling noted previously for zigzag-separated substitutional
impurities.42 An important difference between the bridge
impurities and the substitutional case comes from the aver-
aging out of sublattice-dependent effects and the consequent
possibility of either FM or AFM couplings, as seen in Fig. 4
and in the form of the oscillatory term in Eq. (23). Including
the strain-dependent Fermi wave vector from Eq. (32) in
Eq. (23) returns the same oscillatory behavior as calculated
numerically. In our previous study of substitutional impurities
in strained systems, simple analytic expressions were derived
to predict the amplification, suppression, and oscillatory
behavior of J (ε)

J (0) for the high-symmetry directions of strain and
separation. The accuracy of these simple expressions was as
a result of the simple form of the RKKY coupling expression
in terms of the off-diagonal Green’s functions, from which
the strain dependence could be simply extracted. Although
we have derived similar expressions for the �AB function in
this work, the strain dependence of the coupling amplitude is
complicated significantly by the fact that the denominator in
Eq. (3) relating the required Green’s functions to these � terms
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has a nontrivial strain dependence. Focusing only on the �AB

contribution yields analytic estimates of

J (ε)

J (0)
= 3t0t2

4t2
1 − t2

2

(A), (33)

J (ε)

J (0)
=

|t0|
√

4t2
1 − t2

2√
3t2

2

1 − 2 cos[2Q(ε)D + φB]

1 − 2 cos[2Q(0)D + φB]
(Z) (34)

for armchair (A) and zigzag (Z) separations, respectively. We
note that the armchair expression is identical to that for the
substitutional case, and the zigzag expression varies only in
the oscillatory term. These expressions provide a reasonable
approximation for armchair direction strains, and evaluations
shown by solid red lines in Figs. 6(c) and 6(e) match quite
well with the numerical evaluations shown by the red circles.
However, the analytic expressions were found to greatly un-
derestimate the degree of suppression noted for zigzag strains
for both separation directions and are not shown in Figs. 6(d)
and 6(f). We emphasize, however, that the proper oscillatory
behavior for the coupling as a function of strain for zigzag
separations is correctly predicted for both strain directions and
thus Eq. (34) is a useful tool to predict the amount of strain
required to turn off the coupling or change its sign.

V. CONCLUSIONS

In this work, we have demonstrated that the features of
the indirect exchange interaction between impurities adsorbed
onto a graphene sheet differ significantly from their simpler
substitutional counterparts. In addition, the modification of
these features by a simple uniaxial strain has been shown to
allow an even greater degree of control over the amplitude
and sign of the interaction. The use of a composite Green’s
function �AB was shown to allow for a computationally
efficient calculation of this interaction in both strained and
unstrained cases.

Specifically, we have shown that the RKKY interaction
between adsorbed magnetic moments in graphene depends on
the exact adsorption configuration of the impurities, decaying
with separation D as D−7 for center-adsorbed impurities and
D−3 for bridge-adsorbed impurities, with bridge-adsorbed
impurities also displaying a sign-changing behavior as a
function of separation in the zigzag direction. Using our

prescription, the decay, along with other features of the
interaction, may be derived in a mathematically transparent
fashion.

We have also shown, analytically and numerically, that
mechanical strain modifies the RKKY interaction. Symmetry
breaking of the hexagonal lattice by uniaxial strain leads to a
significantly slower decay rate between center-adsorbed impu-
rities (D−3), which introduces the possibility of dramatically
amplifying the interaction between them. Bridge-adsorbed
impurities separated along certain directions alternate between
ferromagnetic and anti-ferromagnetic coupling as a function of
separation, and applied uniaxial strain introduces further sign-
changing features. Such strain-dependent behavior suggests
the intriguing possibility of selectively tuning the coupling
between moments.

Since a whole range of physical features, such as mag-
netotransport and overall magnetic moment formation, are
predicated upon the magnetic coupling, it is hoped that
this work will help clarify some the discrepancies in the
literature. Experiments to date searching for magnetism in
disordered graphene seem to suggest paramagnetic, noninter-
acting moments.60 Signatures of indirect exchange interactions
between such moments in graphene are very difficult to detect
due to their short-ranged nature, particularly if they adopt
certain adsorption configurations, as we have demonstrated
here. Amplification of these couplings using strain may
provide a path to their detection in future experiments. The
strain-dependent features predicted in this work may also find
applications in carbon-based spintronics, where the ability
to selectively tune the coupling between transition-metal
adsorbates using strain introduces an additional degree of
freedom in the characterization of graphene spintronic devices.
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