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equation with derivative discontinuity-corrected density functional energies
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We present an efficient implementation of the Bethe-Salpeter equation (BSE) for optical properties of materials
in the projector augmented wave method. Single-particle energies and wave functions are obtained from the
Gritsenko, Leeuwen, Lenthe, and Baerends potential [Phys. Rev. A 51, 1944 (1995)] with the modifications
from Kuisma et al. [Phys. Rev. B 82, 115106 (2010)] GLLBSC functional which explicitly includes the
derivative discontinuity, is computationally inexpensive, and yields excellent fundamental gaps. Electron-hole
interactions are included through the BSE using the statically screened interaction evaluated in the random
phase approximation. For a representative set of semiconductors and insulators we find excellent agreement
with experiments for the dielectric functions, onset of absorption, and lowest excitonic features. For the
two-dimensional systems of graphene and hexagonal boron-nitride (h-BN) we find good agreement with previous
many-body calculations. For the graphene/h-BN interface we find that the fundamental and optical gaps of the
h-BN layer are reduced by 2.0 and 0.7 eV, respectively, compared to freestanding h-BN. This reduction is due to
image charge screening which shows up in the GLLBSC calculation as a reduction (vanishing) of the derivative
discontinuity.
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I. INTRODUCTION

Optical spectroscopies such as photoabsorption, lumines-
cence, and reflectance measurements are widely used for
materials characterization. In this context, first-principles
calculations play an increasingly important role in the interpre-
tation and guidance of experimental investigations. However,
theoretical spectroscopic methods are not only useful for
characterization purposes. Indeed, with the recent focus on
solar energy conversion, plasmonics, and optoelectronics—
all applications which involve the interaction of light with
matter—first-principles methods for calculating the optical
properties of complex materials are becoming the essential tool
allowing for reliable computational design of new materials
within these areas.

The two most commonly used ab initio methods for
optical properties are time-dependent density functional theory
(TDDFT)1 and many-body perturbation theory (MBPT).2 For
smaller molecules and clusters,3 TDDFT with the adiabatic
local density approximation (ALDA) provides a reasonably
good compromise between accuracy and computational cost.
However, the ALDA fails to describe several important
effects including the formation of excitons in extended
systems,4 charge-transfer excitations in donor-acceptor molec-
ular complexes,5,6 as well as the screening of optical transitions
by nearby metal surfaces.6 Apart from these qualitative
failures, the ALDA is also found to underestimate the optical
transition energies and overestimate static dielectric constants
of bulk insulators and semiconductors. This problem is, at least
to some extent, related to the well known tendency of the LDA
and related semilocal exchange-correlation (xc) functionals, to
underestimate the fundamental energy gaps in such systems.

All of the above mentioned problems of the TDDFT-
ALDA approach are overcome by the MBPT. In the standard

scheme, the quasiparticle band structures are obtained using
the Green’s function G and screened Coulomb interaction W
approximation,7 while optical excitation energies are obtained
by solving a Bethe-Salpeter equation (BSE)8 with a statically
screened electron-hole interaction. The GW-BSE approach9,10

has been successfully applied to a number of different
systems ranging from bulk semiconductors,9 insulators and
their surfaces,11 two-dimensional systems such as graphene12

and boron nitride layers,13 metal-molecule interfaces,6 isolated
molecules,14–16 and liquid water.17 Nevertheless, applications
of the approach to larger systems are limited by the extremely
demanding computational requirements of both the GW and
BSE calculations.

Several schemes have been proposed to reduce the com-
putational cost of GW-BSE calculations. These include cir-
cumventing the GW step by applying simpler band structures,
for example, derived from the Coulomb hole plus screened
exchange (COHSEX) approximation18 or simply scissors
operator-corrected LDA band structures,19 or the use of
model dielectric functions to describe the screening.20 Another
route of research is directed toward the development of
more accurate TDDFT xc kernels without sacrificing the
computational simplicity associated with this approach.21–23

Recently, Kuisma et al. have introduced the GLLBSC xc
potential24 which is based on an earlier functional developed
by Gritsenko et al.25 This potential explicitly includes the
derivative discontinuity of the xc potential at integer particle
numbers which is important to obtain physically meaningful
band gaps from DFT. The derivative discontinuity �xc is
calculated directly from the Kohn-Sham eigenvalues and
eigenstates. The fundamental band gap is then obtained
as the sum of the Kohn-Sham single-particle gap and the
derivative discontinuity. The GLLBSC method has been shown
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to produce fundamental band gaps as well as band dispersions
for a range of semiconductors in very good agreement with
experiments and more sophisticated theoretical approaches,
while the computational cost is comparable to that of the
LDA.24,26,27

In this paper we combine the TDDFT and BSE methods
for treating the electron-hole interaction with the GLLBSC
method for the wave function and band structures. Considering
both bulk and low-dimensional systems we find that the
accuracy of the GLLBSC-BSE approach is comparable to
the GW-BSE approach. All the methods are implemented
in the GPAW code,28–30 an electronic structure package based
on the projector augmented wave methodology.31,32 For the
bulk systems Si, C, InP, MgO, GaAs, and LiF, we find that
the fundamental gaps and static dielectric constants calcu-
lated with GLLBSC compare well with experimental data.
Importantly, the static dielectric constant should be evaluated
without the derivative discontinuity when using an xc kernel
that does not account for e-h interaction such as the ALDA
or the random phase approximation (RPA). The experimental
optical absorption spectra of all compounds are also very
well reproduced by the GLLBSC-BSE approach including the
absorption onset and excitonic peaks. Finally, the method is
used to compute the band structure and optical absorption
spectra of graphene, hexagonal boron-nitride (h-BN), and
a graphene/h-BN interface. For the isolated sheets we find
good agreement with previous GW-BSE calculations. For the
interface we find that both the quasiparticle and optical gap of
the h-BN sheet are reduced by 2.0 and 0.7 eV, respectively. The
physical origin of this effect is due to image charge screening
by the graphene layer. In the GLLBSC, the reduction shows
up as a vanishing of the derivative discontinuity.

The rest of the paper is organized as follows. Section II
introduces the theoretical framework for calculating optical
properties of solids with GPAW using the TDDFT and BSE
approaches, followed by a brief review of the GLLBSC
method. Details of the implementation are presented in
Sec. III. Section IV presents benchmark results for the band
gaps, dielectric constants, and optical absorption spectra of a
number of bulk semiconductors and insulators. In Sec. V we
present the band structures and optical spectra of graphene,
h-BN, and graphene/h-BN interface. Finally, a summary is
given in Sec. V.

II. METHOD

A. Macroscopic dielectric function

Most of the optical properties of a solid can be obtained
from the macroscopic dielectric function

ε(ω) ≡ 1

ε−1
GG′(q → 0,ω)

∣∣∣∣∣
G=0,G′=0

. (1)

Here εGG′(q,ω) is the (microscopic) dielectric matrix in
reciprocal G space. The off-diagonal elements of the ε matrix
account for local field effects arising due to the periodic crystal
potential. The macroscopic average is achieved through the
inversion of the ε matrix.

In this work we consider only the longitudinal component of
the dielectric function. For applications to optical properties
this is in fact not a restriction because in the relevant long

wavelength limit the electrons do not feel the difference
between longitudinal and transversely polarized fields, and
consequently the two types of response functions coincide.
Still, for anisotropic systems ε(ω) depends on the direction in
which the limit q → 0 is taken. However, to keep the notation
simple we shall omit reference to this direction in what follows.

B. Linear response function from TDDFT

The microscopic dielectric matrix is related to the linear
density response function χ via

ε−1
GG′(q,ω) = δGG′ + 4π

|q + G||q + G′|χGG′(q,ω). (2)

Within TDDFT the response function is related to the response
function of the noninteracting Kohn-Sham electrons χ0 and the
exchange-correlation interaction kernel Kxc via a Dyson-like
equation,

χGG′(q,ω) = χ0
GG′(q,ω)

+
∑
G1G2

χ0
GG1

(q,ω)KG1G2 (q,ω)χG2G′(q,ω). (3)

The KS response function is given by33,34

χ0
GG′(q,ω) = 2

�

∑
k,nn′

(fnk − fn′k+q)

× nnk,n′k+q(G)n∗
nk,n′k+q(G′)

ω + εnk − εn′k+q + iη
, (4)

where εnk is a KS eigenvalue, and fnk is the occupation factor.
The quantity

nnk,n′k+q(G) ≡ 〈ψnk|e−i(q+G)·r|ψn′k+q〉 (5)

is referred to as the charge density matrix.30 In the long
wavelength limit, that is, for q → 0, and for n �= n′, application
of the k · p perturbation theory35 yields the important identity

limq→0nnk,n′k+q(0) = −iq · 〈ψnk|∇|ψn′k〉
εn′k − εnk

. (6)

Alternatively, this form follows directly if we consider the
density induced by a longitudinal vector potential rather than
a scalar potential. A detailed description of the evaluation of
the charge density matrix and the ALDA xc kernel within the
PAW formalism can be found in Ref. 30.

C. The Bethe-Salpeter equation

Several of the shortcomings of the ALDA in describing
optical spectra are overcome by explicitly accounting for
electron self-energy effects and electron-hole interactions
using many-body perturbation theory. In the standard GW-
BSE approach, the single-particle energies are evaluated
using a self-energy in the GW approximation while the
optical excitation energies are obtained by diagonalizing an
effective two-particle Hamiltonian. In the present work we
avoid calculating the GW self-energy by using single-particle
energies obtained from the efficient GLLBSC functional.

Following the standard approach, the excitation energies
corresponding to an external potential with momentum q can
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be found by solving an eigenvalue problem of the form∑
S ′

H(q)SS ′Aλ
S ′ (q) = Eλ(q)Aλ

S(q), (7)

where HSS ′ (q) is the Bethe-Salpeter effective two-particle
Hamiltonian evaluated in a basis of electron-hole states
ψS(rh,re) = ψnk(rh)∗ψmk+q(re). The BSE Hamiltonian reads

HSS ′ (q) = (
ε

QP
mk + q − ε

QP
nk

)
δSS ′ − (fmk+q − fnk)KSS ′ (q). (8)

The kernel consists of an e-h exchange interaction (V ) and a
direct screened e-h attraction (W ),

KSS ′ (q) = VSS ′ (q) − 1
2WSS ′ (q). (9)

The factor 2 accounts for spin. In the Appendix we give a
derivation of the BSE eigenvalue equation and its relation to
the dielectric function.

The effective two-particle Hamiltonian is most conve-
niently evaluated in a plane wave basis. In this representation
the e-h exchange term reads

VSS ′ (q) = 4π

�

∑
G

n∗
nk,mk+q(G)nn′k′,m′k′+q(G)

|q + G|2 . (10)

If we exclude the G = 0 component in the sum we obtain the
short-range exchange kernel V̄ . The difference between V and
V̄ becomes important when the response function is written in
terms of the eigenstates and energies of the BSE Hamiltonian,
see below. To obtain the optical limit VSS ′ (q → 0) we use
the expression (6) to cancel the 1/q2 Coulomb divergence
appearing in the G = 0 term. In the evaluation of the remaining
terms we use a small finite value for q (a value of 0.0001 Å−1

has been used in this work).
The plane wave expression for the e-h direct Coulomb term

reads

WSS ′ (q) = 4π

�

∑
GG′

n∗
nk,n′k′(G)WGG′(k′ − k)nmk+q,m′k′+q(G′),

(11)

where

WGG′(k′ − k) = ε−1
GG′(k′ − k,ω = 0)

|k′ − k + G||k′ − k + G′| . (12)

Here we encounter a divergence of WGG′ when either G or G′
is zero and k = k′. Such a divergence due to the singularity of
the Coulomb kernel at q = 0 is also present in calculating exact
exchange36 and GW self-energies.37 When n �= n′ and m �= m′
we can use the expression (6) to cancel the divergence; while
for n = n′ or m = m′ the singularity in the Coulomb kernel is
integrated out analytically, following Ref. 20, around a sphere
centered at q = 0. We have also adopted another scheme using
an auxiliary periodic function with the same singularity as the
exact function but which can be evaluated analytically.38 These
two schemes give essentially the same results.

The eigenstates and eigenvalues of the BSE Hamiltonian
provide a spectral representation of the four-point density
response function (see the Appendix),

χ4P
SS ′ (q,ω) =

∑
λλ′

Aλ
S(q)

[
Aλ′

S ′ (q)
]∗

N−1
λλ′

ω − Eλ(q) + iη
, (13)

where Nλλ′ is the overlap matrix defined as

Nλλ′ ≡
∑

S

[
Aλ

S(q)
]∗

Aλ′
S (q). (14)

Using the plane wave representation (5) of the electron-hole
basis states, we obtain the following expression for the
response function in reciprocal space:

χGG′(q,ω) = 1

�

∑
SS ′

χ4P
SS ′ (q,ω)nS(G)n∗

S ′ (G′). (15)

From this expression the inverse dielectric constant and
macroscopic dielectric constant follows from Eqs. (2) and (1),
respectively.

We note that upon excluding the 1/q2 term in the e-h
exchange term, that is, replacing V by V̄ in the kernel (9), the
eigenstates and eigenvalues of the BSE Hamiltonian provide
a spectral representation of the irreducible response function
rather than the full response function. In this case the effect
of V̄ is to account for local field effects. Consequently the
macroscopic dielectric function can be written

ε(ω) = 1 − 4π

|q|2 χ̄00(q → 0,ω)

= 1 − 4π

�|q|2
∑
SS ′

nS(0)n∗
S ′ (0)fS ′

×
∑
λλ′

ĀS
λ(q)

[
ĀS ′

λ′ (q)
]∗

N̄−1
λλ′ (q)

ω − Eλ(q) + iη
. (16)

In the above expression the optical limit q → 0 is taken in the
following way. First, the BSE Hamiltonian is constructed using
an e-h basis of vertical excitations (q = 0) but using a finite
small q for the Coulomb interaction 1/|q + G| in V (or V̄ ).
The same finite q is then used when evaluating the dielectric
function from the spectral representation of the (irreducible)
response function.

D. Quasiparticle energies from GLLBSC

The derivative discontinuity �xc is defined as the difference
between the fundamental gap Eg and the Kohn-Sham (KS)
single-particle gap EKS

g as follows:

Eg =I−A = E[nN−1]−2E[nN ]+E[nN+1]=EKS
g + �xc,

(17)

where E[nN ] is the total energy of the N -electron system
and the fundamental band gap Eg is defined as the difference
between the ionization energy I and the electron affinity A.

Within the GLLBSC method, the derivative discontinuity
�xc is obtained through

�xc = 〈
N+1|�(r)|
N+1〉, (18)

where

�(r)=
occ∑
i

Kx[
√

εLUMO−εi−
√

εHOMO−εi]
|ψi(r)|2

n(r)
. (19)

εi , ψi(r), and n(r) are eigenvalues, eigenstates, and electron
density, respectively, obtained from solving the KS equation
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with the following GLLBSC potential:

vGLLBSC(r) = 2εPBEsol
xc (r)

+
occ∑
i

Kx

√
εr − εi

|ψi(r)|2
n(r)

+ vPBEsol
c,resp (r). (20)

Here Kx ≈ 0.382 is a coefficient fitted from electron gas
calculations to reproduce the exchange potential for uniform
electron density and εr is a reference energy taken from the
highest occupied eigenvalue. The GLLBSC method is an
orbital dependent simplification of the KLI approximation
to the exact-exchange optimized effective-potential method
following the guidelines of GLLB25 for the exchange potential.
For the details of the formulation we refer the reader to Ref. 24.

III. IMPLEMENTATION

The TDDFT and BSE codes are implemented in GPAW,28–30

a real-space electronic structure code using the projector
augmented wave methodology.31,32 In this section we focus on
the construction of the screened Coulomb interaction kernel
W , which is the most challenging and time consuming part
in the BSE formalism. For the details of the implementation
on the GLLBSC potential and the linear density response
function in the PAW formalism, we refer to Refs. 24 and 30,
respectively.

A. Screened Coulomb interaction W

The electron-hole correlation kernel Eq. (11) contains the
dynamically screened Coulomb interaction in a plane wave
representation,

WGG′(q,ω) = 4πε−1
GG′(q,ω)

|q + G||q + G′| . (21)

In Eq. (11) the q vector represents the difference between two
k points in the first Brillouin zone. Thus the q-point mesh
has the same form as the k-point mesh. In addition, the q-
point mesh always includes the � point, while the k-point
mesh does not necessarily. The use of k-point symmetry for
obtaining the wave functions at k points outside the irreducible
Brillouin zone has been described in a previous paper.30 In
the following we describe how symmetry considerations can
be used to reduce the q-point sum.

We start by examining the q-point symmetry in the charge
density matrix defined in Eq. (5). Consider a q satisfying

q = T qIBZ + G0, (22)

where qIBZ is an irreducible q point, T is a crystal symmetry
transformation, and G0 is a reciprocal lattice vector that
translates the T qIBZ vector back into the Brillouin zone if
needed. The charge density matrix in Eq. (5) then becomes

nnk,n′k+q(G) = 〈ψnk|e−i(T qIBZ+G0+G)·r|ψn′k+q〉
= 〈ψnT −1k|e−i[qIBZ+T −1(G0+G)]·r|ψn′T −1(k+q)〉
= nnT −1k,n′T −1(k+q)[T

−1(G0 + G)]. (23)

Since the calculation of χ0
GG′(q,ω) involves the summation

of the charge density matrix over all the BZ k points, the
above equation leads directly to the following relation (as long

as T −1k belongs to the k-point mesh):

χ0
GG′(q,ω) = χ0

T −1(G+G0),T −1(G′+G0)(qIBZ,ω). (24)

The above relation also applies to WGG′(q,ω).
Besides crystal symmetry, time reversal symmetry is also

used for systems that have no inversion symmetry. If the
transformation of a given q to IBZ requires both crystal
symmetry and time reversal symmetry via

q = −T qIBZ + G0, (25)

the W matrix should satisfy

WGG′ (q,ω) = W ∗
−T −1(G+G0),−T −1(G′+G0)(qIBZ,ω). (26)

Finally, it has to be emphasized that for a finite k-point
mesh used in a numerical calculation, the crystal symmetry
transformation T should apply to both q points and k points.
This results in reduced crystal symmetry operations if the �

centered q-point mesh does not coincide with the k-point mesh.

IV. SOLIDS

In this section the optical properties of a representative set
of six bulk semiconductors and insulators are studied using
both the ALDA and the BSE. We start by presenting the
fundamental gaps obtained with the LDA and the GLLBSC.
The accuracy of the GLLBSC gaps is similar to G0W0

calculations from the literature with an average absolute
deviation of 0.3 eV from experiments. An important ingredient
in the BSE calculation of optical spectra is the static dielectric
constant which determines the strength of the screened
electron-hole interaction W . We find that the best agreement
with experiment is obtained when the response function is
evaluated from the LDA or GLLBSC Kohn-Sham (i.e., without
adding the derivative discontinuity) energies, and we explain
this from the fact that the electron-hole interaction is not
explicitly accounted for by the random phase approximation
used to obtain ε. Finally, the absorption spectra using both
the ALDA and BSE are presented. Very good agreement
with the experimental spectra is found for the GLLBSC-BSE
combination both for the absorption onset and the excitonic
features.

A. Fundamental gaps

Table I shows the calculated band gaps for Si, C, InP, MgO,
GaAs, and LiF. We have used the experimental lattice constants
for all systems: Si (5.431 Å), C (3.567 Å), InP (5.869 Å),
MgO (4.212 Å), GaAs (5.650 Å), and LiF (4.024 Å). The
Kohn-Sham energies and wave functions were obtained with
GPAW using uniform grids with spacing 0.2 Å and a Fermi
temperature of 0.001 eV. The Brillouin zone was sampled using
a Monkhorst-Pack grid of 24 × 24 × 24 which was found
sufficient to converge the band gaps to within 0.02 eV.

Compared to the LDA band gaps (first column), GLLBSC
even without the discontinuity (second column) improves the
band gaps. The reason is that the GLLBSC potential Eq. (20)
can reproduce the asymptotic 1/r behavior of the Coulomb
potential25 and thus the Kohn-Sham eigenvalues are improved
over the LDA. By adding the discontinuity (third column),
the band gaps agree reasonably well with experimental data
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TABLE I. Band gaps (units in eV) calculated using GLLBSC
without (wo.) and with (w.) the derivative discontinuity �xc added
to the Kohn-Sham gap. These values are compared with the LDA,
G0W0, and experimental data. Underlined values correspond to zero-
temperature values. The mean absolute errors (MAE) with respect to
experiments are summarized in the last row.

GLLBSC GLLBSC
LDA (wo.) (w.) G0W0 Expt.

Si 0.51 0.74 1.09 1.12a 1.17b

C 4.16 4.22 5.52 5.50a 5.48c

InP 0.61 1.15 1.63 1.32d 1.42b

MgO 4.63 6.10 8.32 7.25a 7.83e

GaAs 0.57 0.93 1.23 1.30a 1.52b

LiF 8.87 10.97 14.94 13.27a 14.20f

MAE 2.04 1.25 0.31 0.32

aReference 40.
bReference 41, T = 0 K.
cReference 42.
dReference 43.
eReference 44.
fReference 45.

(last column). The mean absolute error (MAE) with respect
to the experimental data is 0.31 eV in agreement with a
previous study using GLLBSC for oxides in the perovskite
structure.26 The sign of the deviations from experiment seem
to vary randomly. This is in contrast to the G0W0 results
(fourth column), which systematically underestimates the band
gaps with the largest error being almost 1 eV. We note that
(quasi-) self-consistent GW calculations have been shown to
improve the ionization potentials of molecules47 and band
gaps of solids48 by reducing the overscreening resulting from
the LDA starting point. However, such calculations are even
more computationally demanding than G0W0, and are there-
fore not normally used for the calculation of optical spectra.
We will show in the following that GLLBSC represents a
cheap alternative means to GW providing not only reasonable
fundamental gaps, but also very good optical dielectric
constants and absorption spectra.

B. Dielectric constants

Table II shows the calculated static macroscopic dielectric
constants. In addition to the parameters presented for obtaining
the band gaps, 60–90 unoccupied bands, corresponding to
around 140 eV above the Fermi level, were used in the
calculation of the response function Eq. (4). Local field effects
were included up to an energy cutoff of 150–250 eV, which
varies according to the size of the unit cell and corresponds
to 169 G vectors. The static dielectric constants obtained
using the LDA-RPA (first column), that is, RPA calculations
based on the LDA wave functions and energies, are generally
higher than the experimental values (last column) due to
the underestimated LDA band gaps. The overestimation is
enhanced by inclusion of the ALDA kernel (the second row
for each semiconductor), in agreement with previous studies.30

The GLLBSC without the discontinuity increase the band gaps
relative to the LDA and consequently reduces the dielectric
function toward the experimental value. The inclusion of the

TABLE II. The static macroscopic dielectric constant ε obtained
using TDDFT on top of LDA as well as GLLBSC electronic structure
without (wo.) and with (w.) discontinuity �xc applied. The two rows
for each semiconductor correspond to TDDFT calculations with the
RPA and the ALDA kernel, respectively.

GLLBSC GLLBSC
LDA (wo.) (w.) Expt.

Si (RPA) 12.53 11.00 10.25 11.90a

(ALDA) 13.16 11.54 10.73
C 5.56 5.48 5.04 5.70a

5.82 5.74 5.25
InP 11.48 8.92 8.06 12.5a

11.99 9.33 8.41
MgO 3.06 2.52 2.31 2.95b

3.20 2.63 2.39
GaAs 13.52 11.12 10.28 11.10a

14.17 11.68 10.78

aReference 49, T = 300 K.
bReference 50, optical dielectric constant.

discontinuity further opens up the gap and the corresponding
dielectric constants (third column) systematically underesti-
mate the experimental values. This underestimation is a result
of the neglect of electron-hole interaction when the response
function is evaluated at the RPA and (to some extent) ALDA
levels. In order to reduce the error coming from this effect,
the response function should be evaluated using “dressed”
single-particle energies rather than the bare QP energies. In the
following we use the GLLBSC(wo.)-RPA dielectric function
for calculating W .

C. Absorption spectra

The absorption spectra calculated using TDDFT and the
BSE are shown in Fig. 1. TDDFT calculations were per-
formed using the ALDA kernel and the same parameters
as used for obtaining the dielectric constants (see previous
section). For the BSE calculations we used an 8 × 8 × 8
Monkhorst-Pack k-point grid not containing the � point (for
InP 10 × 10 × 10 k points were used). We have also checked
the spectra with 12 × 12 × 12 k-point sampling. The main
peaks in the absorption spectra are well converged with the
applied k-point sampling, however, a complete elimination
of the small “wiggles” seen in the spectra would require
significantly denser k-point sampling. The screened interaction
kernel WGG′(q) was obtained using GLLBSC(wo.)-RPA, with
60 unoccupied bands and local field effects included by
169 G vectors. Three valence and three conduction bands
were taken into account in constructing the BSE matrix.
Again, this is sufficient to converge the major (excitonic)
peaks and the low-energy part of the absorption spectra. The
Tamm-Dancoff approximation,2 consisting of the neglect of
coupling between v-c and c-v transitions, was employed. The
effect of temperature, which in general lowers the band gap
and smears the absorption spectrum,52 is not considered in
the current work. As a result, the spectra presented here are
broadened using smearing factors (in units of eV): Si (0.10), C
(0.35), InP (0.20), MgO (0.25), GaAs (0.20), and LiF (0.12).
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FIG. 1. (Color online) Optical absorption spectra calculated using the LDA-ALDA (dash-dotted line), GLLBSC-ALDA (dashed line),
as well as GLLBSC-BSE (solid line). The derivative discontinuity �xc is included in the GLLBSC calculations. The calculated spectra are
compared with experimental data (dots, Ref. 51).

As can be seen from the absorption spectra in Fig. 1,
LDA-ALDA (green dash-dotted lines) gives threshold optical
transition energies that are 0.5–3 eV lower than experiments
(black dots). This is a result of the too low LDA band gaps.
The use of GLLBSC wave functions and energies including
the derivative discontinuity GLLBSC-ALDA (blue dashed
lines) increases the absorption threshold energies and improves
the agreement with experiments. However, the shape of the
spectra are qualitatively different. In particular, the spectra
are too low at the onset of the absorption and the excitonic
features in Si, MgO, and LiF are completely missed. This is
because the ALDA does not properly account for electron-hole
interactions. In contrast, the spectra obtained from the BSE
using the GLLBSC eigenvalues as QP energies (red lines) are
in excellent agreement with experiments. A small exception
is for GaAs where a small peak, absent in the experimental
spectrum, is seen at around 2 eV. A similar feature was seen in
a previous calculation employing a nonlocal approximation
to the xc kernel within TDDFT,23 but does not appear in
a previous GW-BSE calculation.53 This indicates that the
presence of the feature is related to differences between
the GLLBSC and GW band structure. We note that (small)
deviations between the GLLBSC and GW band structures was
recently proposed as the reason for (slight) inaccuracies in
the GLLBSC-ALDA calculated surface plasmon energies of
Ag(111).27

V. GRAPHENE/BORON-NITRIDE

In this section we study the band structure and optical
absorption spectra of graphene, a single layer of hexagonal

boron-nitride (h-BN), and their interface graphene/h-BN.
The lattice parameter of h-BN is very similar to that of
graphene, making it a promising candidate substrate material
for graphene based devices.54 In contrast to graphene, which
is a semimetal, h-BN has a wide band gap and exhibits strong
excitonic effects. The optical properties of layered BN sheets
as well as BN nanotubes have been studied extensively both
experimentally55 and theoretically.13,56 Upon adsorption of
graphene onto a h-BN sheet, a small band gap of around
10–200 meV, depending on the configuration and interplane
distance, emerges.57 The ground state electronic properties,
including the role of dispersive forces, and the band structure
have been studied.57,58 Below we investigate the optical
properties of the graphene/h-BN interface and assess the
quality of the GLLBSC for such a two-dimensional structure.

Before presenting the results for graphene/h-BN, first we
examine a single h-BN sheet. For the lattice constant of h-BN
we used 2.89 Å, and 20 Å vacuum was included between
the periodically repeated BN layers. Figure 2 shows the band
structure calculated using the LDA (dotted lines) and GLLBSC
(solid lines). The LDA band gap (situated at the K point) is
4.61 eV, which is 0.3 eV larger than reported in an earlier
pseudopotential study.59 The GLLBSC band gap is 7.99 eV,
which includes the derivative discontinuity of 2.12 eV, and is
close to the pseudopotential G0W0 band gap of 7.9 eV.56

Figure 3 shows the absorption spectrum of a h-BN sheet
obtained with three different methods. The LDA-ALDA
spectrum shows a broad absorption peak with an onset at 4.5
eV in good agreement with literature.56 The GLLBSC-ALDA
spectrum is essentially identical to the LDA-ALDA, but blue
shifted by the difference in the band gap. For the BSE
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FIG. 2. Band structure of a h-BN sheet calculated with GLLBSC
(solid lines) and LDA (dotted lines). The top of the valence bands is
set to zero.

calculation, the Brillouin zone was sampled on a non-�-
centered 32 × 32 Monkhorst-Pack grid, and 70 unoccupied
bands were included to obtain the screened interaction W .
A two-dimensional Coulomb cutoff technique60 was used to
avoid interactions between supercells. Since we are interested
in the low-energy part of the absorption spectrum and because
the valence and conduction bands are well separated from
the rest of the bands in the relevant part of the Brillouin
zone (around the K point), only the valence and conduction
bands were included in the BSE effective Hamiltonian. The
absorption spectrum obtained with GLLBSC-BSE shows three
excitonic peaks at 6.1, 7.1, and 7.4 eV with decreasing
amplitude. These exciton energies agree well with the value of
6.2, 7.0, and 7.4 eV obtained with the GW-BSE scheme.56

For the graphene/h-BN interface, we studied the structure
where one C atom is on top of a B atom and the other C
atom is above the center of the BN ring, as shown in Figs. 4(a)
and 4(b). Both graphene and h-BN are kept planar at a distance
3.48 Å apart. Recent RPA calculations found this structure and
adsorption distance to be the most stable.58 Figure 4 shows the
band structure of graphene/h-BN. For the LDA band structure

FIG. 3. (Color online) Optical absorption spectra of a h-BN
sheet calculated using the LDA-ALDA (dash-dotted line), GLLBSC-
ALDA (dashed line), and GLLBSC-BSE (solid line).

FIG. 4. (Color online) (a) Top and (b) side view of a graphene/h-
BN. (c) Band structure of graphene/h-BN calculated with GLLBSC
(solid lines) and LDA (dotted lines). The top of the valence bands is
set to zero.

(dotted lines), a small band gap of 31 meV opens at the K point.
This number is very close to the 53 meV found in an earlier
study.57 The h-BN gap, indicated by the arrow and is 4.60 eV
in the LDA, is essentially the same as found for the isolated
h-BN sheet (4.61 eV). This is in contrast to the GLLBSC
band structure which yields a band gap of the adsorbed h-
BN of 6.01 eV which is 1.98 eV lower than obtained for
isolated h-BN. This sizable reduction of the gap is not due
to hybridization, but rather is a result of a reduction of the
derivative discontinuity from 2.12 eV to essentially zero. We
note in passing that the GLLBSC value of 6.01 eV is 0.3 eV
larger than our G0W0 results for this system (to be published
elsewhere).

The reduction of the fundamental gap when BN is adsorbed
on graphene is physically meaningful and can be explained
by the screening provided by the graphene layer (image
charge effect) which reduces the energy cost of removing
electrons/holes from the BN layer. For molecules on surfaces,
this effect has been shown to be well described by the GW
method, whereas both (semi-)local and hybrid functionals
completely miss the effect predicting no change in the gap upon
adsorption (apart from obvious hybridization effects).61,62

Interestingly, within the GLLBSC the gap reduction is a result
of the vanishing, or strong reduction, of the derivative dis-
continuity. However, this also has the unphysical consequence
that the reduction is present independent of the graphene-BN
distance. This follows from the observation that the derivative
discontinuity in Eq. (19) becomes zero for a metallic system.

The absorption spectrum of graphene/BN calculated with
the three different schemes are shown in Fig. 5(a). Due to the
semimetallic nature of graphene and the dense set of intraband
transitions in the 0–5 eV energy region, a much denser k-point
sampling is required to obtain a smooth absorption spectrum
for this system. We used a 80 × 80 Monkhorst-Pack grid for
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both the ALDA and BSE calculations. 70 unoccupied bands
were taken into account for the calculation of the response
function, while two valence and two conduction bands were
included in the BSE Hamiltonian. The energy range below
1 eV is not shown in the figure since the excitations close to
the Dirac point requires even denser k-points sampling.

The LDA-ALDA spectrum (dashed-dotted line) shows
absorption peaks at 3.9 and 5.6 eV originating from transitions
within the graphene and BN layer, respectively. It closely
resembles a superposition of the spectra from freestanding
graphene (not shown here) and BN sheets (dashed-dotted line
in Fig. 3), with only a minor difference of 0.1 eV in peak
positions. Using GLLBSC-ALDA (dashed line), the two peaks
shift up to 4.2 and 6.8 eV, respectively. The shift in the BN peak
position is in accordance with the shift in the BN gap in Fig. 4.
Note that the graphene peak energy of 4.2 eV is much lower
than the 5.15 eV obtained from a previous G0W0 calculation
(without electron-hole interaction).12 We speculate that the
deviation is due to an incorrect description of the slope of the
graphene bands around the Dirac point where GLLBSC yields
essentially the LDA result, see Fig. 4. Although the absolute
absorption peak for graphene is underestimated, the excitonic
effect is still well described using the BSE. With electron-hole
pair interaction included (solid line), the graphene absorption
peak at 4.2 eV is redshifted by 0.6 eV, the same amount as was
found in Ref. 12. The shift in the BN peak is, however, more

FIG. 5. (Color online) Upper panel: Optical absorption spectrum
of graphene/h-BN calculated using the LDA-ALDA (dash-dotted
line), GLLBSC-ALDA (dashed line), and GLLBSC-BSE (solid line).
Lower panel: The GLLBSC-BSE spectrum of the interface (repeated)
together with the sum of the absorption spectra of an isolated graphene
and BN layer, respectively.

striking. Upon adsorption of graphene, the BN exciton peak
shifts from 6.1 eV in Fig. 3 to 5.4 eV in Fig. 5. The reduction of
the exciton energy of 0.7 eV is much smaller than the 1.98 eV
reduction of the fundamental gap. This means that the exciton
binding energy has been reduced from 1.9 eV in freestanding
BN to 0.6 eV when adsorbed on graphene. Again, this is
explained by the enhanced screening of the electron-hole pair
provided by the electrons in graphene. The substrate induced
screening of exciton binding energies was recently observed
in GW-BSE calculations for molecules adsorbed on a metal
surface.6

VI. CONCLUSIONS

We have presented an implementation of the Bethe-Salpeter
equation (BSE) which allows for the calculation of optical
properties of materials with proper account of electron-hole in-
teractions. Rather than following the standard approach where
quasiparticle energies are obtained from the computationally
costly GW method, we showed that excellent agreement
with experimental absorption spectra of a representative set
of semiconductors and insulators can be obtained by using
single-particle energies from the GLLBSC functional. The
latter yields very good fundamental gaps due to its explicit
inclusion of the derivative discontinuity, and its computational
cost is comparable to LDA. For a single layer of boron-nitride
the fundamental gap and optical spectrum obtained with
GLLBSC-BSE is very close to that of previous GW-BSE cal-
culations. We showed that when BN is adsorbed on graphene,
the fundamental gap is reduced by 2 eV. This reduction can
be explained by image charge screening, and shows up in
the GLLBSC calculation as a vanishing contribution from the
derivative discontinuity. Finally, we found that the absorption
spectrum of the graphene/BN interface is not simply a sum
of the absorption spectra of the isolated layers, because the
transition energies in BN become redshifted by up to almost
1 eV due to screening by the graphene electrons.
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APPENDIX: EFFECTIVE TWO-PARTICLE HAMILTONIAN

To obtain an effective two-particle Hamiltonian describing
the optical excitations of the interacting electron system, we
begin by considering the Bethe-Salpeter equation (BSE) for
the (retarded) four-point response function χ4P. Assuming a
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static electron-hole interaction kernel χ4P can be written

χ4P(r1r2; r3r4,ω) = P 4P(r1r2; r3r4,ω)

+
∫

P 4P(r1r2; r5r6,ω)K4P(r5r6; r7r8)χ4P

× (r7r8; r3r4,ω)dr5dr6dr7dr8. (A1)

In writing the above BSE equation we have made the simpli-
fying, and for practical purposes essential, assumption that the
electron-hole interaction kernel K is frequency independent.
The quantity χ4P is an uncontracted version of the density
response function, that is, χ (r,r′,ω) = χ4P(rr; r′r′,ω), while
P 4P is the four-point response function for independent (but
self-energy dressed) quasiparticles (QP). The kernel is given
by K4P = V − 1

2W , where

V (r1r2; r3r4) = 1

|r1 − r3|δ(r1 − r2)δ(r3 − r4) (A2)

is the electron-hole exchange and

W (r1r2; r3r4)=
∫

ε−1(r1,r′,0)

|r′−r2| dr′δ(r1−r3)δ(r2−r4) (A3)

is the statically screened direct electron-hole interaction.
Assuming that the QP energies and wave functions can be

described by an effective noninteracting Hamiltonian HQP, we
can write the independent response function as

P 4P(r1r2; r3r4,ω) = 2

�

∑
q

∑
knm

(fnk − fmk+q)

× ψ∗
nk(r1)ψmk+q(r2)ψnk(r3)ψ∗

mk+q(r4)

ω + ε
QP
nk − ε

QP
mk+q + iη

,

(A4)

where the wave functions form an orthonormal set and the
occupation factors are 1 or 0 for occupied and empty states,
respectively.

The full four-point response function can also be ex-
panded in the orthonormal basis of single-particle transitions
ψS(r1,r2) = ψ∗

nk(r1)ψmk+q(r2),

χ4P(r1r2; r3r4,ω) =
∑

q

∑
SS ′

χSS ′ (q,ω)

×ψ∗
nk(r1)ψmk+q(r2)ψn′k′(r3)ψ∗

m′k′+q(r4).

(A5)

As a consequence of the periodicity of the crystal lattice,
all four-point functions are diagonal in q. Note that the
indices n,m,n′,m′ must run over all bands, both occupied
and unoccupied, in order to ensure that the two-particle basis
is complete (it will, however, turn out that it is sufficient to
consider only e-h and h-e transitions).

The noninteracting response function is diagonal in the
two-particle basis,

P 4P
SS ′ (q,ω) = fS

ω − εS + iη
δSS ′ , (A6)

where the occupation and transition energy for an electron hole
pair S is defined as

fS ≡ fnk − fmk+q, (A7)
εS ≡ εnk − εmk+q. (A8)

The four-point Bethe-Salpeter equation (A1) in the two-
particle basis corresponding to momentum transfer q becomes

χ4P
SS ′ (q,ω)

= P 4P
SS (q,ω) +

∑
S ′′

P 4P
SS (q,ω)K4P

SS ′′ (q,ω)χ4P
S ′′S ′ (q,ω). (A9)

Expressions for the kernel matrix elements are given in
Eqs. (10) and (11).

Substituting Eq. (A6) into Eq. (A9) and rearranging yields

χ4P
SS ′ (q,ω) = [I (ω + iη) − H(q,ω)]−1

SS ′fS ′ , (A10)

where the effective two-particle Hamiltonian H is defined as

HSS ′ (q,ω) ≡ εSδSS ′ + fSK
4P
SS ′ (q,ω), (A11)

and I is an identity matrix with the same dimension as H.
By dividing the matrices into 4 × 4 blocks corresponding

to two-particle basis functions containing e-h, h-e, e-e, and
h-h transitions, it follows that χ4P

SS ′ is nonzero only within
the 2 × 2 upper left block. For this reason we can reduce the
problem by limiting the two-particle basis functions ψS to the
e-h and h-e states. Using the eigenstates and energies of the
BSE Hamiltonian

H(q)Aλ(q) = Eλ(q)Aλ(q), (A12)

we can construct the spectral representation of the resolvent
of the BSE Hamiltonian

[I (ω + iη)−H(q)]−1
SS ′ =

∑
λλ′

AS
λ(q)

[
AS ′

λ′ (q)
]∗

N−1
λλ′ (q)

ω − Eλ(q) + iη
, (A13)

where Nλλ′(q) is the overlap matrix defined as

Nλλ′(q) ≡
∑

S

[
AS

λ(q)
]∗

AS
λ′(q). (A14)

The BSE Hamiltonian (A12) is in general non-Hermitian
as a matrix in the e-h and h-e basis. However, within the
standard Tamm-Dancoff approximation, in which only the
e-h transitions are considered (i.e., transitions with positive
energies), H(q) becomes Hermitian and Nλλ′(q) = δλλ′ .

Since the two-point response function χGG′(q,ω) is ob-
tained by Fourier transforming χ4P(rr; r′r′,ω), we conclude
from Eq. (A5) that

χGG′(q,ω) = 1

�

∑
SS ′

χ4P
SS ′ (q,ω)nS(G)n∗

S ′ (G′), (A15)

where the charge density matrix nS(G) is defined in Eq. (5).
Finally, the relation to the macroscopic dielectric function

Eq. (16) is established using Eqs. (A10) and (A13), together
with the relation

ε(ω) = 1 − 4π

|q|2 χ̄00(q → 0,ω) (A16)
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between the dielectric function and the irreducible response
function χ̄ . As discussed in Sec. II C the latter is obtained in

place of χ when the long-range G = 0 term is excluded from
the e-h exchange kernel in Eq. (10).
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